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Experimental Section 
Materials

Phenylacetylene, iodomethane, tetrabutylammonium hydroxide, ruthenium(III) 
chloride hydrate, and 2,2'-bipyridine-4,4'-dicarboxylic acid, were purchased from 
Aladdin Industrial Corporation (Shanghai, China). Other reagents were purchased 
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Chemical 
reagents used in this work were obtained from commercial sources and used without 
further purification. 
Synthesis of I-COF

I-COF was synthesized using a reported protocol1-5. 1,3,5-Tris(4-
aminophenyl)benzene (7.0 mg, 0.02 mmol), 4,4′-biphenyldicarboxaldehyde (6.3 mg, 
0.03 mmol), aqueous acetate acid solution (9M, 0.07 mL), 1,4-dioxane (0.07 mL), and 
mesitylene (0.56 mL) were added to a Pyrex tube and mixed thoroughly by ultrasonic. 
The tube was flashed frozen in a liquid N2 bath, flame sealed under a vacuum, and 
placed in a 120 °C oven for 72 h. After that, the solid was collected, washed with 
DMF and THF. Finally, the materials was dried at 80 °C under reduced pressure to 
give yellow colored COF-1 in an isolated yield of ~85%.
Synthesis of [Ru(dcbpy)3]4-

Ru(2,2’-bipyridine-4,4’-dicarboxylic acid)3Cl2 (Ru(H2dcbpy)3Cl2) were 
synthesized by the reported method6-10. In brief, a queous solution of RuCl3·3H2O (50 
mg, 0.19 mmol) and 2,2’-bipyridine-4,4’-dicarboxylic acid (140 mg, 0.57 mmol) was 
heated at 220 °C for 3 h. After cooling, the product was filtered and washed with 
water and methanol, and and dried under vacuum. Then, Ru(H2dcbpy)3Cl2 was 
dissolved in methanol. An aqueous solution of tetrabutylammonium hydroxide was 
added dropwise to the solution while stirring. After stirring in half an hour, the 
supernatant was added to ether to obtain [Ru(dcbpy)3]4-. 
Characterization

Instrumentation. Fourier transformed infrared spectra were recorded as KBr 
pellets using a Nicolet IS 10 spectrometer (FTIR: Thermo Fisher, USA). Thermo-
gravimetric analysis were carried out using a DTG-60/ATG-60A thermal analyzer 
(TGA: Shimadzu, Japan) under a nitrogen atmosphere with a heating rate of 
10 °C/min from room temperature to 1000 °C. Powder X-ray diffraction were 
recorded on a D8 Advance X-ray diffraction meter (PXRD: Bruker, German), using 
CuKα radiation over a 2θ range from 5o to 90o at a scanning rate of 3°/min. An 
inductively coupled plasma (ICP) spectrophotometer (Varian, 725-ES) was used to 

https://www.sciencedirect.com/topics/chemistry/chemical-reaction-reagent
https://www.sciencedirect.com/topics/chemistry/chemical-reaction-reagent
https://www.sciencedirect.com/topics/chemistry/dioxane
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determine Ru concentration in the catalytic solution. The N2 adsorption-desorption 
isotherms were recorded at 77 K by using a BelSorp Max (Ankersmid b.v., 
Netherlands) surface area and porosity analyzer. Before the adsorption measurement, 
the samples (200 mg) were activated at 120 °C under vacuum (< 10-3 torr) for 12h. X-
ray photoelectron spectroscopy measurement was carried out using PHI5000 
Versaprobe III spectrometer (XPS: ULVAC-PHI, Japan) using an Al Kα source. The 
scanning electron microscope was carried out on an JSM-7500F apparatus (SEM: 
JEOL, Japan) equipped with a field emission gun. The UV-vis diffuse reflectance 
spectrawere recorded on a Nicolet Evolution 500 Spectrophotometer (UV-vis DRS: 
Thermo Fisher Scientific, USA ThermoFisher) with BaSO4 as reflectance standard 
from 200 to 900 nm.



Fig. S1 FT-IR spectra for I-COF, 1,3,5-tris-(4-aminophenyl)benzene (TAPB) and 4,4′-
biphenyldicarboxaldehyde (BPDA). 

Fig. S2 PXRD patterns of I-COF: experimental, simulated eclipsed AA stacking, and staggered 
AB stacking.

Fig. S3 (a) N2 adsorption and desorption isotherms of I-COF at 77. (b) The pore size distribution 
of the I-COF.



Fig. S4 (a) XPS survey data of I-COF. (b) C 1s and (c) N 1s deconvoluted XPS spectra of the I-
COF.

Fig. S5 SEM and EDX mapping photographs of I-COF.

Fig. S6 (a) XPS survey data of Q-COF. (b) N 1s deconvoluted XPS spectra of the Q-COF.



Fig. S7 PXRD patterns of I-COF in different experimental conditions to validate chemical 
stability.

Fig. S8 1H NMR spectrum of Ru(H2dcbpy)3Cl2 (DMSO-d6) and [Ru(dcbpy)3]4- (CD3OD).

Fig. S9 FT-IR spectra for the post-synthetically modified [Ru(dcbpy)3]4-N+-COF, pristine N+-
COF and homogeneous catalyst [Ru(dcbpy)3]4-.



Fig. S10 PXRD patterns of [Ru(dcbpy)3]4-N+-COF, N+-COF, I-COF, and simulated eclipsed 
AA stacking.

Fig. S11 (a) N2 adsorption and desorption isotherms of N+-COF. (b) The pore size distribution of 
the N+-COF.

Fig. S12 PXRD patterns of [Ru(dcbpy)3]4-N+-COF in different experimental conditions to 
validate chemical stability.



Fig. S13 Solid state UV-vis diffuse reflectance spectra of I-COF, Q-COF, and [Ru(dcbpy)3]4-

N+-COF.

Fig. S14 Mott-Schottky plots of N+-COF.

Fig. S15 Recycling experiments for photocatalytic thioanisole oxidation.



Fig. S16 FT-IR spectra of the [Ru(dcbpy)3]4-N+-COF and recycled samples of [Ru(dcbpy)3]4-

N+-COF after 5 cycles of use for photocatalytic thioanisole oxidation.

Fig. S17 PXRD patterns of the [Ru(dcbpy)3]4-N+-COF and recycled samples of [Ru(dcbpy)3]4-

N+-COF after 5 cycles of use for photocatalytic thioanisole oxidation.

Fig. S18 FT-IR spectra of the [Ru(dcbpy)3]4-N+-COF and recycled samples of [Ru(dcbpy)3]4-

N+-COF after 5 cycles of use for photocatalytic benzylamine oxidation.



Fig. S19 PXRD patterns of the [Ru(dcbpy)3]4-N+-COF and recycled samples of [Ru(dcbpy)3]4-

N+-COF after 5 cycles of use for photocatalytic benzylamine oxidation.

Fig. S20 Recycling experiments for photocatalytic benzylamine oxidation.

Scheme S1 Packing structures of the proposed I-COF.



Scheme S2 Packing structures of the proposed [Ru(dcbpy)3]4-N+-COF.

Table S1 Fractional atomic coordinates for the unit cell of I-COF.
COF-1 (unit cell parameters: a = b = 45.4467Å, c = 3.4625Å; α = β = 90°, γ = 120°)

Label Type symbol x y z
C1 C 0.44198 -0.46749 0.5
C2 C 0.47711 -0.44528 0.5
C3 C 0.49964 -0.45779 0.5
C4 C 0.48781 -0.49316 0.5
C5 C 0.45211 -0.51514 0.5
C6 C 0.42972 -0.50247 0.5
C7 C 0.41782 -0.45471 0.5
N8 N 0.57128 -0.57775 0.5
C9 C 0.59142 -0.59408 0.5
C10 C 0.5745 -0.62941 0.5
C11 C 0.59239 -0.64703 0.5
C12 C 0.62846 -0.62971 0.5
C13 C 0.64516 -0.59365 0.5
C14 C 0.62703 -0.57625 0.5
C15 C 0.64818 -0.64878 0.5
C16 C 0.31597 -0.36864 0.5
H17 H 0.48717 -0.41808 0.5
H18 H 0.5262 -0.43899 0.5
H19 H 0.44056 -0.54234 0.5
H20 H 0.40262 -0.52015 0.5
H21 H 0.391 -0.47309 0.5
H22 H 0.54701 -0.64339 0.5
H23 H 0.57689 -0.67422 0.5
H24 H 0.67231 -0.57777 0.5
H25 H 0.64131 -0.54887 0.5
H26 H 0.30275 -0.39552 0.5
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