Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Reactivity of Ir(I)-aminophosphane platforms towards oxidants

Marco Palmese, Jesús J. Pérez-Torrente, Vincenzo Passarelli

¹H, ³¹P{¹H} and ¹³C{¹H} NMR spectra of **1**, **2**Cl, **3**, **4**, **5**[PF₆]₂, 6l, **7a/b**PF₆, **8**CF₃SO₃.

Figure 1. ¹H NMR spectrum of 1 (CD_2CI_2 , 298 K).

Figure 2. ${}^{31}P{}^{1}H$ apt NMR spectrum of 1 (CD₂Cl₂, 298 K).

Figure 3. ${}^{13}C{}^{1}H$ apt NMR spectrum of 1 (CD₂Cl₂, 298 K).

Figure 4. ¹H NMR spectrum of 2Cl (CD2Cl2, 298 K).

Figure 5. ${}^{31}P{}^{1}H$ apt NMR spectrum of 2Cl (CD₂Cl₂, 298 K).

Figure 6. ${}^{13}C{}^{1}H$ apt NMR spectrum of 2Cl (CD₂Cl₂, 298 K).

Figure 7. ¹H NMR spectrum of 4 (CD₂Cl₂, 298 K).

Figure 8. ${}^{31}P{}^{1}H$ apt NMR spectrum of 4 (CD₂Cl₂, 298 K).

Figure 9. ${}^{13}C{}^{1}H$ apt NMR spectrum of 4 (CD₂Cl₂, 298 K).

Figure 10. 1 H NMR spectrum of 5 (CD₂Cl₂, 298 K).

Figure 11. ${}^{31}P{}^{1}H$ apt NMR spectrum of 5 (CD₂Cl₂, 298 K).

Figure 12. ${}^{13}C{}^{1}H$ apt NMR spectrum of 5 (CD₂Cl₂, 298 K).

Figure 13. ¹H NMR spectrum of **6**I (CD_2CI_2 , 298 K).

Figure 14. ${}^{31}P{}^{1}H$ apt NMR spectrum of 6I (CD₂Cl₂, 298 K).

Figure 15. ${}^{13}C{}^{1}H$ apt NMR spectrum of 6I (CD₂Cl₂, 298 K).

Figure 16. ¹³C{¹H} apt NMR spectrum of **6**I + **7a/b**I (CD₂Cl₂, 298 K).

Figure 17. ¹H NMR spectrum of **7a**PF₆ + **7b**PF₆ (CD₂Cl₂, 298 K).

Figure 18. ${}^{31}P{}^{1}H$ apt NMR spectrum of **7a**PF₆ + 7bPF₆ (CD₂Cl₂, 298 K).

Figure 19. ${}^{13}C{}^{1}H$ apt NMR spectrum of **7a**PF₆ + **7b**PF₆ (CD₂Cl₂, 298 K).

Figure 20. ¹H NMR spectrum of 8CF₃SO₃ (CD₂Cl₂, 298 K).

Figure 21. ${}^{31}P{}^{1}H{}$ apt NMR spectrum of 8CF₃SO₃ (CD₂Cl₂, 298 K).

Figure 22. ¹³C{¹H} apt NMR spectrum of 8CF₃SO₃ (CD₂Cl₂, 298 K).