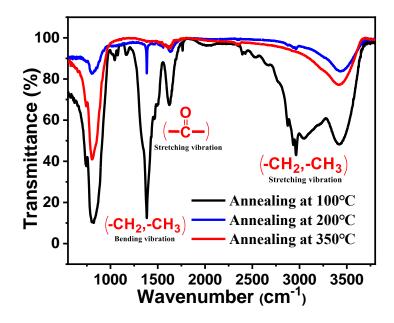
Electronic Supplementary Information

Low-Temperature In-Situ Preparation of Eu³⁺/Tb³⁺-doped CaMoO₄/SrMoO₄ Nanoparticle Thin Films and Their Application in


Anti-Counterfeiting

Jiejun Pan,^a Guang Xu,^a Sixue Ren,^a Tingjie Xu,^a Dongrui Li,^a Mengxin Liu^{*b} Xinan Shi,^{*a} and Daocheng Pan^{*a,b}

^aState Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

^bSchool of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China

*To whom correspondence should be addressed. E-mail: 2415332286@qq.com, xashi@gxu.edu.cn and dcpan@gxu.edu.cn

Figure S1. FT-IR spectra of butyric acid/butylamine-capped $Ca_{0.90}MoO_4$:Eu $^{3+}_{0.10}$ nanoparticle thin films at different annealing temperatures.