Supporting information

Cooperative effects in Schiff base binuclear zinc complexes for the synthesis of aliphatic and semi-aromatic polyesters.

Federica Santulli,[§] Federica Tufano,[§] Mariachiara Cozzolino, Ilaria D'Auria, Maria Strianese, Mina Mazzeo and Marina Lamberti^{*}

[§]These authors equally contributed to the paper.

Department of Chemistry and Biology "Adolfo Zambelli" University of Salerno, via Giovanni Paolo II, 132. 84084 Fisciano (SA) Italy

E-mail: mlamberti@unisa.it

Characterization of complexes2
Figure S1. ¹ H NMR spectrum (C ₆ D ₆ , 298 K, 400 MHz) of complex 13
Figure S2. ¹ H NMR spectrum (C ₆ D ₆ , 298 K, 400 MHz) of complex 24
Figure S3. ¹ H NMR spectrum (C ₆ D ₆ , 298 K, 400 MHz) of complex 35
DOSY-NMR experiments details6
Figure S4. DOSY spectrum (C_6D_6 , 298 K, 600 MHz) of complex 3 (D = 5.76 10 ⁻¹⁰ m ² /s) in the presence of TMS as standard (D = 1.56 10 ⁻⁹ m ² /s).
Figure S5. DOSY spectrum (C ₆ D ₆ , 298 K, 600 MHz) of complex 2 (D = 4.3 10^{-10} m ² /s) in the presence of TMSS as standard (D = 8.7 10^{-10} m ² /s). (Molecular weight of TMSS = 320.84 Da; estimated mass for complex 2 = 1300; Molecular weight for complex 2 = 1200.67 Da)
Ring-Opening Polymerization of lactides8
Table S1. Ring-opening polymerization of L-lactide by complexes 1-3
Table S2. Polymerization of L-LA by complex 2
Figure S6. Molecular weights and molecular weights distribution (determined by GPC analysis) in function of the conversion for the polymerization experiment detailed in Table S2 (L-LA] ₀ :[2] ₀ = 200:2 in THF as solvent).
Table S3. Polymerization of L-LA by complex 2 and ⁱ PrOH 10
Figure S7. Molecular weights and molecular weights distribution (determined by GPC analysis) in function of the conversion for the polymerization experiment detailed in Table S3 $(L-LA]_0:[2]_0:[iPrOH]_0 = 200:2:2$ in THF as solvent).
Figure S8 . ¹ H NMR spectrum (C_6D_6 , 298 K, 400 MHz) of the reaction mixture composed by complex 2 and 2 equivalents of isopropanol

Figure S9. ¹ H NMR spectrum (600 MHz, CDCl ₃ , 298K) of a PLA sample (run 10 in Table 1)11
Figure S10. MALDI-FT-ICR spectrum of a PLA sample (run 9, Table 1)12
Table S4. Ring-opening polymerization of rac-lactide by complexes 1 and 2. 12
Figure S11. Methine region of the homonuclear decoupled ¹ H NMR spectrum (CDCl ₃ , 298K, 400K) of P(<i>rac</i> -LA) (run S1 in Table S4)
Statistical analysis of a PLA sample obtained by <i>rac</i> -LA13
Table S5. Tetrad probabilities based on Bernoullian Statistics (Th) and experimental values (Exp) asobtained by NMR analysis of polymeric sample obtained in entry S1 of Table S4
Table S6. Tetrad probabilities based on Enantiomorphic Site Control Statistics (Th) and experimentalvalues (Exp) as obtained by NMR analysis of polymeric sample obtained in entry S1 of Table S4.
Table S7. Ring-opening polymerization of L-lactide by complex 2, using different solvents. 14
Ring-Opening Polymerization of ε-caprolactone15
Figure S12. ¹ H NMR spectrum (600 MHz, CDCl ₃ , 298K) of PCL (run 17 in Table 2)15
Figure S13. MALDI-FT-ICR spectrum of PCL (run 17, Table 2)15
Ring-Opening COPolymerization of phthalic anhydride and cyclohexene oxide16
Figure S14. ¹ H NMR spectrum (300 MHz, CDCl ₃ , 298K) of a sampling of the reaction mixture during a CHO/PA ROCOP (run 20 in Table 3)
Figure S15. ¹ H NMR spectrum (600 MHz, CDCl ₃ , 298K) of P(CHO-PA) (run 24 in Table 3)16

Figure S1. ¹H NMR spectrum (C₆D₆, 298 K, 400 MHz) of complex 1

¹H NMR (400 MHz, C₆D₆, 298 K): δ 8.62 (s, 2H, CH=N), 7.63 (d, J=2.53 Hz, 2H, Ar-H), 7.60 (d, J= 7.88 Hz, 2H, Ar-H), 7.29 (br, 2H, Ar-H), 7.08 (d, J=2.48 Hz, 2H, Ar-H), 6.58 (t, 2H, Ar-H), 6.49 (t, 2H, Ar-H), 4.98 (br, 2H, N-CH₂), 4.51 (br, 4H, S-CH₂), 3.57 (br, 2H, N-CH₂), 1.90 (s, 18H, CCH₃), 1.50 (s, 18H, CCH₃), 0.14 (br, 36H, Si(CH₃)₃).

Figure S2. ¹H NMR spectrum (C₆D₆, 298 K, 400 MHz) of complex 2

¹H NMR (400 MHz, C₆D₆, 298 K): δ 8.24 (s, 2H, CH=N), 7.80 (d, J=7.92 Hz, 2H, Ar-H), 7.60 (d, J=2.50 Hz, 2H, Ar-H), 6.80 (d, J=2.15 Hz, 2H, Ar-H), 6.76 (m, 4H, Ar-H), 6.66 (t, 2H, Ar-H), 4.25 (br, 4H, S-CH₂), 4.00 (br, 4H, N-CH₂), 1.82 (s, 18H, CCH₃), 1.50 (s, 18H, CCH₃), 0.10 (s, 36H, Si(CH₃)₃).

Figure S3. ¹H NMR spectrum (C₆D₆, 298 K, 400 MHz) of complex 3

¹H NMR (400 MHz, C₆D₆, 298 K): δ 7.84 (d, J= 7.90 Hz 2H, Ar-H), 7.73 (s, 1H, CH=N), 7.59(s, 1H, Ar-H), 7.05 (s, 1H, Ar-H), 6.75 (m, 3H, Ar-H), 3.98 (br, 2H, S-CH₂), 3.54 (br, 2H, N-CH₂), 1.83 (s, 9H, CCH₃), 1.49 (s, 9H, CCH3), 0.78 (t, 3H, CH₃), 0.10 (s, 18H, Si(CH₃)₃).

DOSY-NMR experiments details

A measurement of diffusion has been carried out by observing the attenuation of the NMR signals during a pulsed field gradient experiment using the double stimulated echo pulse sequence. In particular, 2D DOSY PGSE NMR spectra were performed on a Bruker Avance 600 spectrometer at 298 K without spinning. Tetramethylsilane (TMS) was added as the internal standard. The dependence of the resonance intensity (I) on the gradient strength (G) is described by the following equation:

$$I(G) = I_0 \exp[-D \gamma^2 G^2 \delta^2 (\Delta - \delta/3)]$$

where I is the observed intensity (attenuated signal intensity), I_0 is the reference intensity unattenuated signal intensity), D is the diffusion coefficient, γ is the nucleus gyromagnetic ratio, G is the gradient strength, δ is the gradient duration, and Δ is the diffusion delay. The parameters δ and Δ were kept constant during the experiments (1800 µs and 0.15 s, respectively) whereas G varied from 5 to 95% in 100 steps.

A nonlinear regression on I and G^2 data gave the coefficients D for the samples and the corresponding internal standard signals (D_{sample} and D_{TMS} , respectively).

The molecular masses in solution (MM) were simply estimated using Graham's law of diffusion: $D = K(T/MM)^{1/2}$, where the constant K depends on geometric factor. By assuming the same K for both species in solution and a constant temperature, the relative diffusion rate of the sample and the TMS is given by

$$D_{\text{sample}}/D_{\text{TMS}} = (MM_{\text{TMS}}/MM_{\text{sample}})^{1/2}$$

This allows the calculation of an unknown molecular mass. This method is useful when a highly accurate value is not required for the molecular mass.

Figure S4. DOSY spectrum (C₆D₆, 298 K, 600 MHz) of complex **3** (D = $5.76 \ 10^{-10} \ m^2/s$) in the presence of TMS as standard (D = $1.56 \ 10^{-9} \ m^2/s$).

Figure S5. DOSY spectrum (C₆D₆, 298 K, 600 MHz) of complex **2** (D = 4.3 10^{-10} m²/s) in the presence of TMSS as standard (D = 8.7 10^{-10} m²/s). (Molecular weight of TMSS = 320.84 Da; estimated mass for complex **2** = 1300; Molecular weight for complex **2** = 1200.67 Da).

Ring-Opening Polymerization of lactides

^a Run	Cat	[LA] ₀ /[Zn] ₀ / [iPrOH] ₀	Temp	Time	^b Conv	${}^{c}M_{n}{}^{th}$	^d $M_{ m n}^{ m GPC}$	đĐ
			(°C)	(h)	(%)	(×10 ³)	(×10 ³)	
1	1	200:2:0	25	2	0			
				4	5			
				7	11			
				24	76	21.9	21.1	1.17
2	2	200:2:0	25	2	0			
				4	7			
				7	20			
				24	69	19.9	21.0	1.27
3	3	100:1:0	25	2	8			
				4	20			
				7	40			
				9	61	8.8	34.4	1.34
4	1	200:2:0	60	2	57			
				3	74			
				4	86	24.8	28.8	1.24
5	2	200:2:0	60	2	85	24.6	24.7	1.23
6	3	100:1:0	60	0.5	50			
				1	82	11.8	31.3	1.47

Table S1. Ring-opening polymerization of L-lactide by complexes 1-3

General conditions: All reactions were carried out in 1 mL of THF. $[1]_0$ - $[2]_0 = 5.0 \ 10^{-6} \ mol; <math>[3]_0 = 1.0 \ 10^{-5} \ mol, (i.e. [Zn]_0 = 1.0 \ 10^{-2} \ M)$. [L-LA] = 1.0 M). ^aDetermined by ¹H NMR spectral data. ^b M_n^{th} (g mol⁻¹) 144,13 x ([L-LA]_0/[Cat]_0) x L-LA conversion (for entries 1-6). ^cExperimental M_n (in g mol⁻¹) and M_w/M_n (D) values were determined by GPC in THF using polystyrene standards and corrected using the factor of 0.58.

Time (h)	^a Conv. (%)	^b M _n th	^с $M_{ m n}^{ m GPC}$	۴Ð
		(x 10 ³)	(x 10 ³)	
6	20	5.8	8.8	1.18
16	70	20.2	23.4	1.20
20	80	23.1	26.2	1.24
24	84	24.2	26.2	1.33

Table S2. Polymerization of L-LA by complex 2

The polymerization was carried out in 1 mL of THF. $[2]_0 = 5.0 \times 10^{-6} \text{ mol. } [\text{L-LA}] = 1.0 \text{ M. } [\text{L-LA}]_0: [2]_0: [iPrOH]_0 = 200:2:0. aDetermined by ¹H-NMR spectral data. <math>{}^{b}M_n^{\text{th}}$ (g mol⁻¹) = 144.13 x ([L-LA]_0/[2]_0) x L-LA conversion. ${}^{c}M_n^{\text{GPC}}$ (in g mol⁻¹) and M_w/M_n (D) values were determined by GPC in THF using polystyrene standards and corrected using the factor of 0.58.

Figure S6. Molecular weights and molecular weights distribution (determined by GPC analysis) in function of the conversion for the polymerization experiment detailed in Table S2 $(L-LA]_0$: [2] $_0 = 200:2$ in THF as solvent).

Time (h)	^a Conv. (%)	${}^{\mathrm{b}}M_{\mathrm{n}}{}^{\mathrm{th}}$	с $M_{ m n}^{ m GPC}$	¢Ð
		(x 10 ³)	(x 10 ³)	
0.5	32	4.6	2.5	1.15
1	42	6.1	4.1	1.10
1.5	55	7.9	5.3	1.17
2	69	9.9	7.0	1.18

Table S3. Polymerization of L-LA by complex 2 and ⁱPrOH

The polymerization experiment was carried out in 1 mL of THF. $[2]_0 = 5.0 \times 10^{-6}$ mol. [L-LA] = 1.0 M. $[L-LA]_0:[2]_0:[iPrOH]_0 = 200:2:2$. ^aDetermined by ¹H-NMR spectral data. ^bM_nth (g mol⁻¹) = 144.13 x ($[L-LA]_0/[iPrOH]_0$) x L-LA conversion. ^cM_n^{GPC} (in g mol⁻¹) and M_w/M_n (Đ) values were determined by GPC in THF using polystyrene standards and corrected using the factor of 0.58.

Figure S7. Molecular weights and molecular weights distribution (determined by GPC analysis) in function of the conversion for the polymerization experiment detailed in Table S3 $(L-LA]_0:[2]_0:[iPrOH]_0 = 200:2:2$ in THF as solvent).

Figure S8. ¹H NMR spectrum (C_6D_6 , 298 K, 400 MHz) of the reaction mixture composed by complex **2** and 2 equivalents of isopropanol.

Figure S9. ¹H NMR spectrum (600 MHz, CDCl₃, 298K) of a PLA sample (run 10 in Table 1).

Figure S10. MALDI-FT-ICR spectrum of a PLA sample (run 10, Table 1).

Table S4. Ring-opening polymerization of *rac*-lactide by complexes 1 and 2.

^a Run	Cat	[L-LA] ₀ /[Zn] ₀ / [ⁱ PrOH] ₀	^b Conv	^c $M_{\rm n}^{\rm th}$	${}^{\mathrm{d}}M_{\mathrm{n}}{}^{\mathrm{GPC}}$	đ
			(%)	(×10 ³)	(×10 ³)	
S1	1	200:2:0	66	19.0	16.3	1.41
S2	2	200:2:0	77	22.2	25.6	1.43

^aReactions were carried out in 1 mL of solvent (THF), complexes $1-2 = 5.0 \ 10^{-6}$ mol; *rac*-lactide was used as monomer. Temperature = 25 °C; time = 24 h. ^bDetermined by ¹H NMR spectral data. ^c M_n^{th} (g mol⁻¹) = 144,13 x ([LA]₀/[ⁱPrOH]₀) x LA conversion. ^dExperimental M_n (in g mol⁻¹) and M_w/M_n (Đ) values were determined by GPC in THF using polystyrene standards and corrected using the factor of 0.58.

Figure S11. Methine region of the homonuclear decoupled ¹H NMR spectrum (CDCl₃, 298K, 400K) of P(*rac*-LA) (run S1 in Table S4).

Statistical analysis of a PLA sample obtained by rac-LA

Tetrad	Formula	Th	Ехр
[<i>rmm</i>]	$P_{m}^{2}/2$	0.254	0.254
[rmm]	$P_r P_m/2$	0.102	0.143
[mrr]	$P_r P_m/2$	0.102	0.134
[mmm]	$P_{r}^{2} + P_{r}P_{m}/2$	0.185	0.200
[mrm]	$(P_m^2 + P_r P_m)/2$	0.356	0.266

Table S5. Tetrad probabilities based on Bernoullian Statistics (Th) and experimental values (Exp) as obtained by NMR analysis of polymeric sample obtained in entry S1 of Table S4.

Table S6. Tetrad probabilities based on Enantiomorphic Site Control Statistics (Th) and experimental values (Exp) as obtained by NMR analysis of polymeric sample obtained in entry S1 of Table S4.

Tetrad	Formula	Th	Exp
[rmm]	$[\alpha^2(1-\alpha)+\alpha(1-\alpha)^2]/2$	0.113	0.254
[<i>rmm</i>]	$[\alpha^2(1-\alpha)+\alpha(1-\alpha)^2]/2$	0.113	0.143
[mrr]	$[\alpha^2(1-\alpha)+\alpha(1-\alpha)^2]/2$	0.113	0.134
[mmm]	$[\alpha^2+(1-\alpha)^2+\alpha^3+(1-\alpha)^3]/2$	0.435	0.200
[mrm]	$[\alpha(1-\alpha)+\alpha(1-\alpha)]/2$	0.226	0.266

^a Run	Solvent	Temp	Time	^b Conv
	(V, mL)	(°C)	(h)	(%)
2	THF	25	24	69
	(1 mL)			
S3	DCM	25	24	74
	(1 mL)			
5	THF	60	2	85
	(1 mL)			
S4	Toluene	60	1	36
	(1 mL)		2	59
S5	Toluene	60	1	24
	(2.5 mL)		2	37
			4	63
			6	77
S6	THF	60	1	20
	(2.5 mL)		2	39
			4	57
			6	75

Table S7. Ring-opening polymerization of L-lactide by complex 2, using different solvents.

^aAll reactions were carried out with complex $2 = 5.0 \ 10^{-6} \text{ mol}$; iPrOH = 1.0 10⁻⁵ mol; L-LA = 1.0 10⁻³ mol (200 eq, i.e. 100 eq/Zn). ^bDetermined by ¹H NMR spectral data.

Ring-Opening Polymerization of ε-caprolactone

Figure S12. ¹H NMR spectrum (600 MHz, CDCl₃, 298K) of PCL (run 17 in Table 2).

Figure S13. MALDI-FT-ICR spectrum of PCL (run 17, Table 2).

Ring-Opening COPolymerization of phthalic anhydride and cyclohexene oxide

Figure S14. ¹H NMR spectra (300 MHz, CDCl₃, 298K) of the sampling of the reaction mixtures during two CHO/PA ROCOP experiments (blue spectrum: run 20 in Table 3, black spectrum: run 22 in Table 3).

Figure S15. ¹H NMR spectrum (600 MHz, CDCl₃, 298K) of a P(CHO-PA) isolated sample (run 24 in Table 3).