Synergetic Spin Singlet-Quintet Switching and Luminescence in mononuclear Fe(II) 1,3,4-Oxadiazole Tetradentate Chelates with NCBH₃ Co-ligand.

Sriram Sundaresan,^a Jens-Georg Becker,^a Julian Eppelsheimer,^a Alexander Sedykh,^b Luca. M. Carrella,^a Müller-Buschbaum^b and Eva Rentschler^{a*}

^aDepartment Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany. Email: rentschl@uni-mainz.de

^bInstitute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.

Electronic Supplementary Information

Table of Contents

1. NMR-spectra:	2
2. IR-spectra:	10
3. Mass spectra:	12
4. Crystal structures:	14
5. UV-Vis-Spectra:	18
6. Photoluminescence spectroscopy	20
6. Magnetic Data:	22
7. Synthesis of complex precursors	25
8. References:	25

Figure S1: ¹H-NMR-spectra of Methyl-2-naphthoate (I) in D⁶-DMSO.

Figure S2: ¹H-NMR-spectra of 2-Naphthohydrazide (II) in D⁶-DMSO.

Figure S3: ¹H-NMR-spectra of N'-(2-chloroacetyl)-2-naphthohydrazide (III) in D⁶-DMSO.

Figure S4: ¹H-NMR-spectra of 2-(Chloromethyl)-5-(naphthalen-2-yl)-1,3,4-oxadiazole (IV) in D^{6} - CDCl₃.

Figure S5: ¹H-NMR-spectra of Bis[(2-pyridyl)methyl]amine (V) in CDCl₃.

Figure S6: ¹H-NMR-spectra of 2-(Naphthalen-2-yl)-5-[N,N-bis(2-pyridylmethyl)aminomethyl]-1,3,4-oxadiazole (L^{Tetra-ODA}) in CDCl₃.

Figure S7:13C-NMR-spectraof2-(Naphthalen-2-yl)-5-[N,N-bis(2-pyridylmethyl)aminomethyl]-1,3,4-oxadiazole(LTetra-ODA)in CDCl3.

Figure S8: COSY-NMR-spectra of (L^{Tetra-ODA}) 2-(Naphthalen-2-yl)-5-[N,N-bis(2-pyridylmethyl)aminomethyl]-1,3,4-oxadiazole in CDCl₃.

Figure S9:HSCQ-NMR-spectraof2-(Naphthalen-2-yl)-5-[N,N-bis(2-pyridylmethyl)aminomethyl]-1,3,4-oxadiazole(LTetra-ODA)in CDCl3.

Figure S10:HMBC-NMR-spectraof2-(Naphthalen-2-yl)-5-[N,N-bis(2-pyridylmethyl)aminomethyl]-1,3,4-oxadiazole(L^{Tetra-ODA}) in CDCl3.

Figure S11: ¹H-NMR-spectra of $[Zn(py)_4(NCBH_3)_2]$ ·0.5H₂O in D⁶-DMSO.

Figure S12: ¹H-NMR-spectra of $[Zn(L^{Tetra-ODA})(NCBH_3)_2] \cdot 0.5H_2O$ (**C2**) in D⁶-DMSO.

Figure S13:TemperaturedependentEvans-measurementof $[Fe(L^{Tetra-}ODA)(NCBH_3)_2] \cdot 1.5CH_3OH$ in D³-MeCN.

Figure S14: Temperature dependent Evans-measurement of $[Fe(L^{Tetra-ODA})(NCBH_3)_2]$ ·1.5CH₃OH in D³-MeCN.

2. IR-spectra:

Figure S15: IR spectrum of 2-(Naphthalen-2-yl)-5-[N,N-bis(2-pyridylmethyl)aminomethyl]-1,3,4-oxadiazole (L^{Tetra-ODA}).

Figure S16: IR spectrum of [Fe(L^{Tetra-ODA})(NCBH₃)₂]·1.5 CH₃OH (**C1**)

Figure S17: IR spectrum of $[Zn(L^{Tetra-ODA})(NCBH_3)_2] \cdot 0.5H_2O$ (C2).

3. Mass spectra:

Figure S18: ESI mass spectrum of 2-(Naphthalen-2-yl)-5-[N,N-bis(2-pyridylmethyl)aminomethyl]-1,3,4-oxadiazole (L^{Tetra-ODA}).

Figure S19: ESI mass spectrum of [Zn(L^{Tetra-ODA})(NCBH₃)₂]·0.5H₂O.

Figure S20: Isotopic pattern of ESI mass spectra of $[Zn(L^{Tetra-ODA})(NCBH_3)_2] \cdot 0.5H_2O$: predicted (left) and measured (right).

Figure S21: ESI mass spectrum of [Fe(L^{Tetra-ODA})(NCBH₃)₂]·1.5 CH₃OH (C1)

Figure S22: Isotopic pattern of ESI mass spectra of $[Fe(L^{Tetra-ODA})(NCBH_3)_2] \cdot 1.5 CH_3OH$ (C1): predicted (left) and measured (right).

4. Crystal structures:

 Table S1: Crystallographic Data of [Fe(L^{Tetra-ODA})(NCBH₃)₂]·1.5 CH₃OH at 220 K and 120 K

Compound	C1 (220 K)	C1 (120 K)	
Empirical formula	(C ₂₇ H ₂₇ B ₂ FeN ₇ O) 1.5(CH ₄ O)	(C ₂₇ H ₂₇ B ₂ FeN ₇ O) 1.5(CH ₄ O)	
Formula weight / g mol ⁻¹	591.09	591.09	
Crystal size / mm	0.2 x 0.187 x 0.18	0.23 x 0.19 x 0.15	
Crystal system	monoclinic	monoclinic	
Space group	C2/c	C2/c	
Unit cell dimensions			
a / Å	26.7229(7)	26.0632(7)	
b / Å	10.9749(2)	10.5691(2)	
c / Å	21.1290(6)	21.3067(6)	
α/°	90	90	
β/°	95.813(2)	96.182(2)	
γ/°	90	90	
Volume / Å	6164.9(3)	5835.1(3)	
Z	8	8	
$\rho_{calc.}$ / g cm ⁻¹	1.266	1.346	
μ / mm ⁻¹	0.528	0.558	
F(000)	2454	2472	
Temperature / K	220	120	
Diffractometer	STOE STADIVARI	STOE STADIVARI	
Radiation	Μο-Κα	Μο-Κα	
artheta – range for data collection / °	1.938 < ϑ < 31.123	1.923 < ϑ < 30.771	
Index ranges	-38 < h < 36	-36 < h < 37	
	-15 < k < 15	-15 < k < 15	
	-30 < l < 30	-30 < l < 30	
Collected reflections	56550	51641	
Independent reflections	58044	53070	
Completeness	0.908	0.929	
Max. and min. transmission	0.9893 and 0.4678	0.9090 and 0.2842	
R _{int}	0.0364	0.0308	
R _{sigma}	0.0318	0.0291	
Data/ restraints/ parameters	9010 / 38 / 404	8470 / 31 / 403	
Goodness-of-fit on F ²	0.977	1.078	
Final $R_1[l \ge 2\sigma(l)]$	0.0455	0.0444	
Final $wR_2[l \ge 2\sigma(l)]$	0.1354	0.1316	
Final <i>R</i> ₁ [<i>alldata</i>]	0.0638	0.0573	
Final wR ₂ [alldata]	0.1438	0.1369	

Figure S23: Molecular structure of $[Fe(L^{Tetra-ODA})(NCBH_3)_2]$ ·1.5 CH₃OH and it is ideal coordination octahedron with front view (left) and view along the Fe-N5 axis (right), calculated with SHAPE. Colour scheme: dark grey – C, grey – H, violet – N, red – O, bright orange – Se, orange – Fe. ORTEP representation with atomic displacement parameters set to 50 % probability.

Figure S24: C-H ^{...} π interaction in $[Fe(L^{Tetra-ODA})(NCBH_3)_2]$ ·1.5 CH₃OH (240 K). Least-squares plane A is defined by C2, C3, C4, C5, C6 and C7. Interacting C-H fragment is labeled as C18-H18. Green point – center of the aromatic ring in A. Purple point – orthogonal intersection of H18 onto plane A. *Offset* r = 1.26 Å, *interaction distance* $d_{QH} = 2.94$ Å, $\alpha = 159.5^{\circ}$ and $\beta = 64.6^{\circ}$. ORTEP representation with atomic displacement parameters set to 50 % probability.

Figure S25: One-dimensional network of "complex dimers" in $[Fe(L^{Tetra-ODA})(NCBH_3)_2]$ ·1.5 CH₃OH. Red dashed lines represent intermolecular distances. Colour scheme: pink – B, dark grey – C, grey – H, violet – N, red – O, orange – Fe. ORTEP representation with atomic displacement parameters set to 50 % probability.

Figure S26: Packing of $[Fe(L^{Tetra-ODA})(NCBH_3)_2] \cdot 1.5 CH_3OH$ with view along the c-axis (left) and view along the b-axis (right). Red rectangles mark the one-dimensional chains of complex molecules along the c-axis. Blue areas illustrate the channel of solvent molecules. Colour scheme: pink – B, dark grey – C, grey – H, violet – N, red – O, orange – Fe. ORTEP representation with atomic displacement parameters set to 50 % probability.

Figure S27: Molecular structure of $[Fe(L^{Tetra-ODA})(NCBH_3)_2] \cdot 1.5$ CH₃OH and its ideal coordination octahedron with view along the Fe-N5 axis at 220 K (left) and 120 K (right), calculated with SHAPE. Colour scheme: pink – B, dark grey – C, grey – H, violet – N, red – O, orange– Fe. ORTEP representation with atomic displacement parameters set to 50 % probability.

Figure S28 One-dimensional network of "complex dimers" in $[Fe(L^{Tetra-ODA})(NCBH_3)_2] \cdot 1.5$ CH₃OH at 220 K (left) and 120 K (right). Unit cell changes are remarkably more pronounced along the a-axis, which corresponds to the interdimer short contacts. Red dashed lines represent intermolecular distances between iron(II) centers. Colour scheme: pink – B, dark grey – C, grey – H, violet – N, red – O, orange– Fe. ORTEP representation with atomic displacement parameters set to 50 % probability.

5. UV-Vis-Spectra:

Figure S29: UV-Vis spectrum of L^{Tetra-ODA} in n-butyronitril (c = 0.03 mmol/l).

Table S2: Summary of the present absorption maxima λ_i in the UV/Vis spectrum of $L^{Tetra-ODA}$ in n-butyronitril with corresponding molar extinction coefficients (ε) in M⁻¹cm⁻¹.

	λ	λ2	λ_3	λ_4	λ_{5}	λ_6	λ ₇	λ ₈
λ_{abs} / nm	216	249	258	289	300	320	328	337
ε / M ⁻¹ cm ⁻¹	15084	79001	67250	13506	11902	1068	775	850

Figure 30: UV/Vis spectra of $[Fe(L^{Tetra-ODA})(NCBH_3)_2] \cdot 1.5 CH_3OH$ in n-butyronitrile for different concentrations. From measurement to measurement, the concentration was halved by diluting the solution. There is no absorption observable between 600-1000 nm.

ε in M ⁻¹ cm ⁻¹ .						
	λ_{1}	λ ₂	λ_3	λ_4	λ_{5}	λ_6
$\lambda_{_{abs}}$ / nm	258	289	301	320	328	337
ε / M ⁻¹ cm ⁻¹	2657	2729	3192	12488	13588	12890

Table S3: Summary of the present absorption maxima λ_i in the UV/Vis spectra of [Fe(**L**^{Tetra-ODA})(NCBH₃)₂]·1.5 CH₃OH in n-butyronitrile with corresponding molar extinction coefficients ϵ in M⁻¹cm⁻¹.

Figure S31: UV/Vis spectra of $[Zn(L^{Tetra-ODA})(NCBH_3)_2] \cdot 0.5H_2O$ in n-butyronitrile for different concentrations. From measurement to measurement, the concentration was halved by diluting the solution. There is no absorption observable between 400-1000 nm.

6. Photoluminescence spectroscopy

Figure S32: PL-spectra of $[Fe(L^{Tetra-ODA})(NCBH_3)_2] \cdot 1.5 CH_3OH$ in solid state. Samples were excited with λ_{ex} = 300 nm. Measurements were done at 77 K (red solid lines) and at room temperature (black solid lines).

Figure S33: PL-spectra of $[Zn(L^{Tetra-ODA})(NCBH_3)_2] \cdot 0.5H_2O$ in solid state. Samples were excited with $\lambda_{ex} = 300$ nm. Measurements were done at 77 K (red solid lines) and at room temperature (black solid lines).

Figure S34: Emission spectra of $[Fe(L^{Tetra-ODA})(NCBH_3)_2] \cdot 1.5 CH_3OH$ between 310 nm and 500 nm for a series of time related measurements. During the measured 190 min, liquid nitrogen was allowed to evaporate, which results in a heating of the sample.

Figure S35: Emission spectra of $[Zn(L^{Tetra-ODA})(NCBH_3)_2] \cdot 0.5H_2O$ between 310 nm and 625 nm for a series of time related measurements. During the measured 190 min, liquid nitrogen was allowed to evaporate, which results in a heating of the sample.

Figure S36: Combined intensity versus wavelength plot of absorption (blue dashed line) and emission spectra with excitation wavelengths of $\lambda_{ex,1}$ = 249 nm (black solid line) and $\lambda_{ex,2}$ = 289 nm (red solid line) of **L**^{Tetra-ODA} in n-butyronitrile.

6. Magnetic Data:

Figure S37: Temperature dependent magnetic behavior of single crystals of $[Fe(\mathbf{L}^{Tetra-ODA})(NCBH_3)_2] \cdot 1.5 CH_3OH$ in the form of $\chi_M T$ vs. T plots. Left: Measurement between 300-2 K (black open squares) and 2-400 K (red open circles). Right: Subsequent measurement between 400-2 K (blue open triangles) and 2-300 K (green open triangles).

Figure S38: Temperature dependent magnetic behavior of single crystals of $[Fe(L^{Tetra-ODA})(NCBH_3)_2]$ ·1.5 CH₃OH after five days under air in the form of the resulting $\chi_M T$ vs. T plot. Magnetic susceptibility was determined between 300-100 K (black open circles), 100-300 K (red open squares), 300-100 K (blue open squares) and 100-300 K (green open triangles).

Figure S39: First derivative of χ_M^T with respect to *T* for $[Fe(\mathbf{L}^{Tetra-ODA})(NCBH_3)_2]$ ·1.5 CH₃OH. Susceptibility was measured from 300 K to 2 K (black open squares) and subsequently from 2 K to 400 K (red open circles).

The variable temperature Evans NMR data was measured in CD₃CN at a concentration of 5.06 X 10⁻³ M, from 298 to 343 K (at 5 K intervals) in heating mode $[Fe(\mathbf{L}^{Tetra-ODA})(NCBH_3)_2]\cdot H_2O$. Once the temperature is reached the sample is stabilized at that temperature for two minutes at each step before measuring. The methodology to calculate χ_MT from Evans ¹H NMR method data at a range of temperatures has been previously described.¹⁻²

The modelling of each dataset as a gradual and complete SCO, using the regular solution model, equation (1) below,³⁻⁴ resulted in good fits with R²=0.98. For each data set, the fit gives Δ H and Δ S, the thermodynamic enthalpy and entropy values associated with the spin crossover. From these two values the T_{1/2} value can be calculated, simply by dividing Δ H/ Δ S, as Δ G = 0 at T_{1/2} (and Δ G = Δ H – T Δ S). The derived parameters are reported in Tables S1 and S2.

 $\chi_{M}T(T) = \chi_{M}T(max) / 1 + e^{((-\Delta H/RT) + (\Delta S/R))}$ (S1)³⁻⁴

Where:

 $\chi_M T(T)$ is $\chi_M T$ measured at temperature T,

 $\chi_{M}T(max)$ is the maximum $\chi_{M}T$ value, which herein was set to 4.0 emu K mol⁻¹ as this value falls within the expected literature range for iron(II) complexes.⁵⁻⁶

R is the ideal gas constant (8.314 J mol⁻¹ K⁻¹)

Note:

The Evans method has a relative error of 5-10%,⁷ therefore significant errors are associated with the data fitting.

Table S4: Solution χT vs T data at 5.06 X 10⁻³ M in CD₃CN solutions of [*Fe*($L^{Tetra-ODA}$)(*NCBH*₃)₂]·1.5 CH₃OH measured in the heating mode from 298 to 343 ± 1 K, at 5 K intervals.

Temperature	
(К)	χT (cm ³ . K. mol ⁻¹)
298	0.5082
303	0.6703
308	0.7369
313	0.8375
318	0.9859
323	1.0078
328	1.1785
333	1.382
338	1.5611
343	1.7698

7. Synthesis of complex precursors

[Fe(Py)₄(NCBH₃)₂]·2.5H₂O

The precursor complex used for synthesis was prepared as reported in the literature.⁸ The following reaction was carried out under an inert atmosphere using Schlenk technique. Iron(II) tetrafluoroborate hexahydrate (2.00 g, 5.80 mmol, 1 eq.) and pyridine (1.82 g, 23.0 mmol, 4 eq.) were dissolved in degassed water (18 ml). To this solution sodium cyanoborohydride (0.72 g, 11.5 mmol, 2 equiv.) was added in portions. The resulting yellow suspension was stirred for one hour. The yellow solid was filtered and dried in vacuo to yield (3.288 g, 7.179 mmol Yield: 61 %) as yellow powder in moderate yields. FT-IR: \tilde{v} (cm⁻¹) = 2341, 2184, 1599, 1440, 1216, 1120, 1068, 1038, 1008, 753, 697, 626, 421. Elemental analysis calculated C, 53.17, H, 6.19, N, 16.91. Found 52.85, H, 6.00, N, 16.69.

$[Zn(Py)_4(NCBH_3)_2] \cdot 0.5H_2O$

The precursor complex used for synthesis was prepared with slight modifications to the literature.⁸ Zinc(II) sulfate hydrate (2.00 g, 11.14 mmol, 1 equiv.), pyridine (3.52 g, 3.59 ml, 44.56 mmol, 4 equiv.) and sodium cyanoborohydride (1.40 g, 22.28 mmol, 2 equiv.) were suspended in water (50 ml). The reaction mixture was stirred for one hour, during which a colourless solid had formed. The solid was filtered and dried in vacuum to yield $[Zn(py)_4(NCBH_3)_2]$ as colourless powder (1.79 g, 3.87 mmol, 35 %). ¹H-NMR (400 MHz, DMSO, δ (ppm)): 8.58 - 8.56 (m, 8H, pyCH), 7.82 - 7.78 (m, 4H, pyCH), 7.41 - 7.38 (m, 8H, pyCH), 0.56 - 0.10 (m, 6H, BH3) FT-IR: \tilde{v} (cm⁻¹) = 2980, 2341, 2184, 1598, 1575, 1558, 1541, 1520, 1507, 1487, 1457, 1440, 1397, 1216, 1153, 1120, 1068, 1038, 1008, 860, 765, 753, 697, 626, 420. Elemental analysis calculated C, 56.16, H, 5.78, N, 17.86. Found C, 55.82, H, 5.69, N, 17.66.

8. References:

- 1. D. F. Evans, J. Chem. Soc., 1959, 2003-2005.
- 2. C. Piguet, J. Chem. Ed., 1997, 74, 815-816.
- 3. O. Kahn, *Molecular Magnetism*, VCH Publishers Inc., New York, 1993.
- 4. C. P. Slichter and H. G. Drickamer, J. Chem. Phys., 1972, 56, 2142-2160.
- 5. H. Toftlund and J. J. McGarvey, Top. Curr. Chem., 2004, 233, 151-166.

- L. J. Kershaw Cook, R. Kulmaczewski, R. Mohammed, S. Dudley, S. A. Barrett, M. A. Little,
 R. J. Deeth and M. A. Halcrow, *Angew. Chem. Int. Ed.*, 2016, 55, 4327-4331
- 7. L. A. Yatsunyk and F. A. Walker, Inorg. Chem., 2004, 43, 757-77.
- 8. K. Nakano, N Suemura, S Kawata, A Fuyuhiro, T Yagi, S Nasu, S Morimoto and S Kaizaki, Dalton Trans., 2004, 982-988.