Supplementary Information

Interesting influence of Al₂O₃ on the catalytic stability of Co₂P, MoP and CoMoP catalysts for dry reforming of methane

Shuo Chen, Qingshan Rong, Dongmei Liu,* Na Sun and Zhiwei Yao*

School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun,

113001, P.R. China.

Corresponding author:

Dongmei Liu (E-mail: ldmwain1234@163.com)

Zhiwei Yao (E-mail: mezhiwei@163.com)

1. Experimental Section

1.1 Sample preparation

The unsupported oxide precursors were prepared by stirring an aqueous solution of Co(CH₃COO)₂·4H₂O, (NH₄)₆Mo₇O₂₄·4H₂O and (NH₄)₂HPO₄ with a given molar ratio of Co:Mo:P=x:y:1 (x=2, y=0; x=0, y=1; x=1, y=1) at room temperature (RT) for 0.5 h. The alumina-supported oxide precursors were prepared by the incipient wetness method using the solutions mentioned above and commercial Al₂O₃ (γ -Al₂O₃, 99.99%, purchased from Shanghai Macklin Biochemical Technology Co. Ltd.) with theoretical loading of 30 wt.% M (M=Co for Co₂P and M=Mo for MoP and CoMoP). All the oxide precursors followed by a long time drying at 110 °C and 3 h-calcination at 500 °C. The metal phosphides were prepared from unsupported and alumina-supported oxide precursors via H₂-reduction method described in our previous study.²⁴ The final reduction tempretures were 850 °C for Co_2P and CoMoP phosphides, and 950 °C for MoP phosphides.

1.2 Sample characterization

X-ray diffraction (XRD) examinations were conducted using an X-ray diffractometer (X'Pert Pro MPD) with a Cu Ka radiation. The BET surface areas were measured on a NOVA4200 instrument. Carbon content was determinded using an elemental analyzer (Euro EA3000). The scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) element mapping images were obtained on Hitachi S-4800. The H₂-TPR analysis was performed in a quartz tube microreactor and the effluent gases were monitored using a thermal conductivity detector. Prior to the H₂-TPR run, the unsupported (0.05 g) and supported (0.1 g) oxide precursors were initially pretreated in Ar flow at 300 °C for 0.5 h. After being cooled to RT, the samples were heated from RT to 900 °C using 10%H₂/Ar (30 ml min⁻¹) at a rate of 4 °C min⁻¹. CO₂ (CH₄) dissociation study was performed with 6%CO₂(6%CH₄)/Ar mixture flowing at a rate of 50 ml min⁻¹. Before the dissociation reaction, the sample (0.1 g) was preheated at 850 or 900 °C under an H_2 flow for 0.5 h and then cooled to 800 °C in Ar. Then the gas mixture was allowed to pass through the sample. The change of CH₄ and CO₂ during reaction was monitored using gas chromatography (GC).

1.3 Catalytic performance tests

The DRM reaction was carried out in a fixed-bed flow system and the catalytic activity of catalyst was tested in a micro-reactor (id: 8 mm) at atmospheric pressure.

The feed gas consisted of 10 ml min⁻¹ of 50%CH₄ and 50%CO₂. The pretreatment process and gas detection device were similar to those in CO₂ (CH₄) dissociation study. The CH₄ conversion, CO₂ conversion and carbon balance were defined as follows ($n_{i,in}$ = the initial molar fraction of component *i* in the feed, $n_{i,out}$ = the final molar fraction of component *i* in the gaseous effluent):

$$\begin{split} X_{CH_4}(\%) &= \frac{n_{CH_4,in} - n_{CH_4,out}}{n_{CH_4,in}} \times 100 \\ X_{CO_2}(\%) &= \frac{n_{CO_2,in} - n_{CO_2,out}}{n_{CO_2,in}} \times 100 \\ B_C &= \frac{\left(n_{CO,out} + n_{CH_4,out} + n_{CO_2,out}\right)}{\left(n_{CH_4,in} + n_{CO_2,in}\right)} \end{split}$$

2. Results

Fig. S1 XRD patterns of fresh γ -Al₂O₃ and the γ -Al₂O₃ heated in H₂ at 850 °C.

Fig. S2 Carbon balance value versus reaction time.

Catalyst	CO chemisorption (µmol g ⁻¹) –	CH ₄ conversion rate (μ mol g _{cat} ⁻¹ s ⁻¹)		Specific activity (s ⁻¹) ^a	
		1 h	10 h	1 h	10 h
Co ₂ P	2.2	21.42	21.06	9.74	9.57
MoP	2.8	33.17	33.05	11.85	11.8
СоМоР	3.4	29.36	26.60	8.64	7.82
Co ₂ P/Al ₂ O ₃	31.3	33.40	33.54	1.07	1.07
MoP/Al ₂ O ₃	35.4	13.24	2.53^{b}	0.37	0.07
CoMoP/Al ₂ O ₃	36.8	31.00	29.77	0.84	0.81

Table S1 CH₄ conversion rate and specific activity of phosphide catalysts for DRM.

 $\overline{a(CH_4 \text{ conversion rate})/(\text{chemisorbed CO})}$

^bCH₄ conversion rate at 4 h