Supporting Information

MnO_xH_y-modified CoMoP/NF nanosheet arrays as hydrogen evolution reaction and oxygen evolution reaction bifunctional catalysts under alkaline condition

Xuemin Wang, Ke Zhang, Yuhan Xie, Dehua Yu, Haoze Tian and Yongbing Lou*

School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China. E-mail: lou@seu.edu.cn.

List of figures and tables

Figure S1. (a) SEM of bare NF at 100 μ m size; (b) SEM of bare NF at 10 μ m size; (c) SEM of bare NF at 1 μ m size.

Figure S2. (a) SEM of MnO_xH_y/NF at 100 µm size; (b) SEM of MnO_xH_y/NF at 10 µm size; (c) SEM of MnO_xH_v/NF at 1 µm size.

Figure S3. (a) SEM of CoMo precursors/NF at 20 μm size; (b) SEM of CoMo precursors/NF at 10 μm size; (c) SEM of CoMo precursors/NF at 1 μm size.

Figure S4. SEM-EDS spectra of MnO_xH_y/CoMoP/NF.

Figure S5. TEM-EDS spectra of MnO_xH_v/CoMoP/NF.

Figure S6. XRD of CoMoP powder.

Figure S7. HER LSV curves of $MnO_xH_y/CoMoP/NF$ with different electrodeposition times.

Figure S8. CV curves of NF, MnO_xH_y/NF , CoMoP/NF, and $MnO_xH_y/CoMoP/NF$ in the voltage range of -1.0V to -0.9V (V vs Ag/AgCl).

Figure S9. OER LSV curves of $MnO_xH_y/CoMoP/NF$ with different electrodeposition times.

Figure S10. CV curves of NF, MnO_xH_y/NF , CoMoP/NF, and $MnO_xH_y/CoMoP/NF$ in the voltage range of 0-0.1V (V vs Ag/AgCl).

Figure S11. (a) Calculated TOFs for the as-synthesized catalysts in 1 M KOH (for HER); (b) TOF values of the as-synthesized catalysts at the overpotential of 100 mV (for HER); (c) Calculated TOFs for the as-synthesized catalysts in 1 M KOH (for OER); (d) TOF values of the as-synthesized catalysts at the overpotential of 300 mV (for OER).

Figure S12. (a) Electrocatalytic HER LSV (without IR-correction, Speed of 5 mV s⁻¹) performance of $MnO_xH_y/CoMoP/NF$, CoMoP/NF, MnO_xH_y/NF and bare NF in 1 M KOH; (b) Electrocatalytic OER LSV (without IR-correction, Speed of 5 mV s⁻¹) performance of $MnO_xH_y/CoMoP/NF$, CoMoP/NF, MnO_xH_y/NF and bare NF in 1 M KOH.

Figure S13. XPS of $MnO_xH_y/CoMoP/NF$ as HER cathode and OER anode after 24 h stability treatment.

Figure S14. XRD of $MnO_xH_y/CoMoP/NF$ as HER cathode and OER anode after 24 h stability treatment.

Table S1. The mass of of the as-synthesized catalysts.

Table S2. EIS equivalent circuit fitting results of catalysts under HER condition.

Table S3. EIS equivalent circuit fitting results of catalysts under OER condition.

Table S4. HER activity comparison of different catalysts in alkaline condition.

Table S5. OER activity comparison of different catalysts in alkaline condition.

Figure S1. (a) SEM of bare NF at 100 μ m size; (b) SEM of bare NF at 10 μ m size; (c) SEM of bare NF at 1 μ m size.

Figure S2. (a) SEM of MnO_xH_y/NF at 100 µm size; (b) SEM of MnO_xH_y/NF at 10 µm size; (c) SEM of MnO_xH_y/NF at 1 µm size.

Figure S3. (a) SEM of CoMo precursors/NF at 20 μ m size; (b) SEM of CoMo precursors/NF at 10 μ m size; (c) SEM of CoMo precursors/NF at 1 μ m size.

Figure S4. SEM-EDS spectra of $MnO_xH_y/CoMoP/NF$.

Figure S5. TEM-EDS spectra of $MnO_xH_y/CoMoP/NF$.

Figure S6. XRD of CoMoP powder.

Figure S7. HER LSV curves of MnO_xH_y/CoMoP/NF with different electrodeposition times.

Figure S8. CV curves of NF, MnO_xH_y/NF , CoMoP/NF, and $MnO_xH_y/CoMoP/NF$ in the voltage range of -1.0V to -0.9V (V vs Ag/AgCl).

Figure S9. OER LSV curves of $MnO_xH_y/CoMoP/NF$ with different electrodeposition times.

Figure S10. CV curves of NF, MnO_xH_y/NF , CoMoP/NF, and $MnO_xH_y/CoMoP/NF$ in the voltage range of 0-0.1V (V vs Ag/AgCl).

TOF calculation

The turnover frequency (S⁻¹) can be estimated according to this equation²:

TOF $(S^{-1}) = I/2nF$ (HER); TOF $(S^{-1}) = I/4nF$ (OER)

where I represents the current density for different samples during the LSV measurement in 1 M KOH, F is the Faraday constant (C/mol), and n is the number of the active sites (mol) for different samples. The number of active sites (n) was

measured from CV curves within the potential range of -0.2 to 0.6 V (vs. RHE) at a scan rate of 50 mV/s in 1.0 M PBS (pH=7).

n (mol) could be determined with the following equation:

n (mol) = Q/2F (HER); n (mol) = Q/4F (OER)

Figure S11. (a) Calculated TOFs for the as-synthesized catalysts in 1 M KOH (for HER); (b) TOF values of the as-synthesized catalysts at the overpotential of 100 mV (for HER); (c) Calculated TOFs for the as-synthesized catalysts in 1 M KOH (for OER); (d) TOF values of the as-synthesized catalysts at the overpotential of 300 mV (for OER).

Figure S12. (a) Electrocatalytic HER LSV (without IR-correction, Speed of 5 mV s⁻¹) performance of $MnO_xH_y/CoMoP/NF$, CoMoP/NF, MnO_xH_y/NF and bare NF in 1 M KOH; (b) Electrocatalytic OER LSV (without IR-correction, Speed of 5 mV s⁻¹) performance of $MnO_xH_y/CoMoP/NF$, CoMoP/NF, MnO_xH_y/NF and bare NF in 1 M KOH.

Figure S13. XPS of $MnO_xH_y/CoMoP/NF$ as HER cathode and OER anode after 24 h stability treatment.

Figure S14. XRD of $MnO_xH_y/CoMoP/NF$ as HER cathode and OER anode after 24 h stability treatment.

Samples	area	mass	Δm
NF	1*1cm ⁻²	63.4 mg	
CoMoP/NF	1*1cm ⁻²	87.6 mg	24.2 mg
MnO _x H _y /CoMoP/NF	1*1cm ⁻²	94.5 mg	6.9 mg

 Table S1. The mass of of the as-synthesized catalysts.

Cathodes	$R_{ct}(\Omega)$	
MnO _x H _y /CoMoP/NF	3.56	
CoMoP/NF	8.86	
MnO _x H _y /NF	9.88	

Table S2. EIS equivalent circuit fitting results of catalysts under HER condition.

Cathodes	$R_{ct}(\Omega)$	
MnO _x H _y /CoMoP/NF	0.89	
MnO _x H _y /NF	2.67	
CoMoP/NF	3.68	

Table S3. EIS equivalent circuit fitting results of catalysts under OER condition.

Catalyst	Electrolyte	Current density	Overpotential	Reference
MnO _x H _y /CoMoP/NF	1М КОН	10 mA/cm ²	61 mV	This work
MnO _x H _y /CoMoP/NF	1М КОН	100 mA/cm ²	138 mV	This work
Ce-CoMoP/MoP/C	1М КОН	10 mA/cm ²	188 mV	1
One-Dimensional CoMoP Nanostructures	1M KOH	10 mA/cm ²	126 mV	2
Mn-CoP/Co ₂ P	1М КОН	10 mA/cm ²	82 mV	3
Mn doped Ni ₂ P	1М КОН	100 mA/cm ²	205 mV	4
Mn _{0.52} Fe _{0.71} Ni-MOF-74	1М КОН	100 mA/cm ²	267 mV	5
Ni ₃ S ₂ /CoMoP/NF	1М КОН	10 mA/cm ²	96.8 mV	6
CoP/CoMoP/NF	1М КОН	100 mA/cm ²	250 mV	7
Ni ₂ P-MoP	1M KOH	100 mA/cm ²	161 mV	8

Table S4. HER activity comparison of different catalysts in alkaline condition.

Catalyst	Electrolyte	Current density	Overpotential	Reference
MnO _x H _y /CoMoP/NF	1М КОН	100 mA/cm ²	330 mV	This work
One-Dimensional CoMoP Nanostructures	1M KOH	10 mA/cm ²	391 mV	2
FeMnZn/Mn-FeS	1M KOH	100 mA/cm ²	390 mV	9
Mn _{0.52} Fe _{0.71} Ni-MOF-74	1M KOH	100 mA/cm ²	462 mV	5
Ni ₃ S ₂ /CoMoP/NF	1М КОН	50mA/cm ²	270 mV	6
CoP/MoP@C,N	1М КОН	100mA/cm ²	390 mV	10
CoMoP@N-doped CQDs	1М КОН	100 mA/cm ²	370 mV	11
CoMoP@N,P,C	1М КОН	10 mA/cm ²	296 mV	12
Ni ₂ P-MoP	1M KOH	10 mA/cm ²	319 mV	8

 Table S5. OER activity comparison of different catalysts in alkaline condition.

Reference

- T. Chen, Y. Fu, W. Liao, Y. Zhang, M. Qian, H. Dai, X. Tong and Q. Yang, *Energy Fuels*, 2021, 35, 14169-14176.
- 2. X. Chang, J. Yan, X. Ding, Y. Jia, S. Li and M. Zhang, Nanomaterials (Basel), 2022, 12, 3886.
- F. Tang, Y. W. Zhao, Y. Ge, Y. G. Sun, Y. Zhang, X. L. Yang, A. M. Cao, J. H. Qiu and X. J. Lin, *J Colloid Interface Sci*, 2022, 628, 524-533.
- P. Xu, L. Qiu, L. Wei, Y. Liu, D. Yuan, Y. Wang and P. Tsiakaras, *Catal. Today*, 2020, 355, 815-821.
- 5. W. Zhou, Z. Xue, Q. Liu, Y. Li, J. Hu and G. Li, *ChemSusChem*, 2020, 13, 5647-5653.
- M. B. Poudel, N. Logeshwaran, A. R. Kim, K. S.C, S. Vijayapradeep and D. J. Yoo, *J Alloy Compd*, 2023, 960, 170678-170689.
- D. Ma, Z. He, T. Wei, L. Wang, Y. Li, K. V. Yurievich, R. Anton, T. Bian and S. Yan, *Int. J. Hydrogen Energy*, 2023.
- W. Zhang, H. Yan, Y. Liu, D. Wang, Y. Jiao, A. Wu, X. Wang, R. Wang and C. Tian, J. Mater. Chem. A, 2023, 11, 15033-15043.
- L. Huang, R. Yao, Z. Li, J. He, Y. Li, H. Zong, S. Han, J. Lian, Y.-G. Li and X. Ding, *Green Chem*, 2023, 25, 4326-4335.
- D. Sun, S. Lin, Y. Yu, S. Liu, F. Meng, G. Du and B. Xu, *J Alloy Compd*, 2022, 895, 162595-162604.
- J. Han, J. Wu, S. Guan, R. Xu, J. Zhang, J. Wang, T. Guan, Z. Liu and K. Li, *Electrochim.* Acta, 2023, 438, 141595-141604.
- L. Yu, Y. Xiao, C. Luan, J. Yang, H. Qiao, Y. Wang, X. Zhang, X. Dai, Y. Yang and H. Zhao, ACS Appl. Mater. Interfaces, 2019, 11, 6890-6899.