Electronic Supplementary Information

Immobilizing ultrasmall Pt nanocrystals onto 3D interweaving BCN nanosheet-graphene networks enables efficient methanol oxidation

reaction

Binfeng Shen, Yujie Wei, Pengyun Sun, Haiyan He, Guobing Ying,* Huajie Huang*

College of Mechanics and Materials, Hohai University, Nanjing 210098, China

*E-mail: yinggb2010@126.com or huanghuajie@hhu.edu.cn

Supplementary Results:

Fig. S1 Typical FE-SEM images of the bulk g-C₃N₄ powder at different magnifications.

Fig. S2 Typical FE-SEM images of the exfoliated $g-C_3N_4$ nanosheets at different magnifications.

Fig. S3 HR-TEM image of the 3D Pt/BCN-G nanoarchitecture shows the lattice fringes of graphene nanosheets.

Fig. S4 (a) Low-magnification HAADF-STEM and the corresponding elemental mapping images reveal the homogeneous dispersion of (b) C, (c) B, (d) N and (e) Pt elements in the Pt/BCN-G nanoarchitecture.

Fig. S5 EDX spectrum of the 3D Pt/BCN-G nanoarchitecture verifies the presence of C, B, N and Pt components in the hybrid.

Fig. S6 High-resolution C 1s XPS spectrum of GO, indicating that the carbon sheets possess a

large number of oxygen functional groups.

Fig. S7 The ECSA-normalized CV curves of (a) the Pt/BCN-G electrodes with different BCN/G ratios, and (b) $Pt/(BCN)_7$ -G₃, Pt/G, Pt/BCN, Pt/CNT, and Pt/C electrodes in 0.5 M H₂SO₄ and 1 M CH₃OH solution at 50 mV s⁻¹.

Fig. S8 (a) LSV curves of (a) the Pt/BCN-G electrodes with different BCN/G ratios and (b) $Pt/(BCN)_7-G_3$, Pt/G, Pt/BCN, Pt/CNT, Pt/C and Pt/CN electrodes in 0.5 M H_2SO_4 and 1 M CH_3OH solution at 50 mV s⁻¹.

Fig. S9 (a-b) FE-SEM images and (c) corresponding Pt size distribution of the Pt/BCN-G catalyst after the long-term stability test.

Catalyst	B (at%)	N (at%)
Pt/(BCN) ₁ -G ₉	1.0	2.6
Pt/(BCN) ₃ -G ₇	1.7	7.7
Pt/(BCN) ₅ -G ₅	4.8	12.8
Pt/(BCN) ₇ -G ₃	6.6	18.0
Pt/(BCN) ₉ -G ₁	8.5	23.2

Table S1 The B and N contents in various Pt/BCN-G catalysts.

Table S2 Compiled study comparing CV results for different catalysts.

Electrode	ECSA	Mass activity	Specific activity
	(m² g⁻¹)	(mA mg⁻¹)	(mA cm ⁻²)
Pt/(BCN) ₁ -G ₉	69.9	680.1	0.97
$Pt/(BCN)_3-G_7$	79.2	806.5	1.02
$Pt/(BCN)_5-G_5$	110.4	1213.5	1.10
$Pt/(BCN)_7-G_3$	121.2	1782.2	1.47
$Pt/(BCN)_9-G_1$	93.6	946.3	1.01
Pt/G	43.3	438.5	1.01
Pt/BCN	24.6	221.5	0.9
Pt/CNT	31.9	297.7	0.93
Pt/C	29.7	262.5	0.88

Table S3 Comparison of methanol oxidation behavior of the 3D $Pt/(BCN)_7$ -G₃ catalyst with various state-of-the-art Pt-based electrocatalysts.

Electrode	ECSA (m ² g ⁻¹)	Mass activity (mA mg ⁻¹)	Electrolyte	Ref.
Pt/(BCN) ₇ -G ₃	121.2	1782.2	0.5 M H ₂ SO ₄ +1 M CH ₃ OH	This work
Pt/[BMIM]BF ₄ /CNT	N. A	155.0	0.5 M H ₂ SO ₄ +1 M CH ₃ OH	[48]
Pt/imidazolium- salt/CNT	67.6	410.0	0.5 M H ₂ SO ₄ +0.5 M CH ₃ OH	[22]
Pt/N-doped graphene	N. A	376.2	0.5 M H ₂ SO ₄ +0.5M CH ₃ OH	[49]
$Pt/RGO-Ti_3C_2T_x$	90.1	1102.0	0.5 M H ₂ SO ₄ +1 M CH ₃ OH	[37]
Pt/RGO/CNT	117.3	691.1	0.5 M H ₂ SO ₄ +1 M CH ₃ OH	[50]
Pt/G-C ₃ N ₄	69.0	621.8	0.5 M H ₂ SO ₄ +1 M CH ₃ OH	[39]
Pt/RGO-MoS ₂	104.3	737.8	0.5 M H ₂ SO ₄ +1 M CH ₃ OH	[51]
PtPd dendrites/RGO	81.6	647.2	0.5 M H ₂ SO ₄ +1 M CH ₃ OH	[52]