Electronic Supplementary Information

Synthesis, structure and characterizations of Cd₂TeO₃Cl₂ with

unprecedented [Cd₂O₆Cl₄] octahedral dimers

Linan Wang,^{a,b‡} Chen Bai,^{a‡} Yingying Kong,^a Maqsood Iqbal,^a Yu Chu^{a,b*} and Junjie Li^{a,b*}

 ^aResearch Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China
^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

[‡] These authors contributed equally.

*Corresponding author: <u>chuy@ms.xjb.ac.cn</u> (Yu Chu), <u>lijunjie@ms.xjb.ac.cn</u> (Junjie Li)

CONTEXT

Table S1 Atomic coordinates (\times 10⁴), equivalent isotropic displacement parameters (Å² × 10³) and bond valence calculations (BVSs) for Cd₂TeO₃Cl₂.

Table S2 Bond lengths [Å] and angles [deg] for Cd₂TeO₃Cl₂.

Fig. S1 The EDS spectrum, SEM image and EDS mappings of Cd₂TeO₃Cl₂.

Fig. S2 The powder XRD patterns of $Cd_2TeO_3Cl_2$ before and after heating experiments, where $CdCl_2$ (PDF #09-0401) and $CdTeO_3$ (PDF #22-0129) XRD patterns used as the references.

Atom	Wyckoff	x	У	Z	U(eq)	BVS
Cd(1)	2 <i>i</i>	7250(1)	1783(1)	4616(1)	14(1)	1.71
Cd(2)	2 <i>i</i>	2826(1)	4411(1)	2670(1)	14(1)	1.91
Te(1)	2 <i>i</i>	7729(1)	7602(1)	2421(1)	11(1)	3.95
O(1)	2 <i>i</i>	9069(3)	4972(3)	3535(3)	16(1)	2.17
O(2)	2 <i>i</i>	4888(3)	6641(3)	2973(3)	18(1)	2.07
O(3)	2 <i>i</i>	6658(3)	8359(3)	4661(2)	13(1)	2.08
Cl(1)	2 <i>i</i>	3049(1)	6959(1)	-853(1)	21(1)	0.77
Cl(2)	2 <i>i</i>	8516(1)	-768(1)	7539(1)	18(1)	0.72
	(GII			0.182	

Table S1 Atomic coordinates ($\times 10^4$), equivalent isotropic displacement parameters (Å² × 10³) and bond valence calculations (BVSs) for Cd₂TeO₃Cl₂.

[a] The bond valence sum is calculated by bond-valence theory $(S_{ij} = \exp[(R_0 - R)/B]$, where *R* is an empirical constant, R_0 is the length of bond I (in angstroms), and B = 0.37).

[b] The global instability index (GII) calculated using:

$$G = \sqrt{\frac{\sum_{i=1}^{n} (BVS - v_i)}{N}}$$

where N is the number of atoms in the formula unit. The GII is calculated as 0.182 which is lower than 0.2 indicating the rationality of the structure from this side.

Table S2 Bond lengths [Å] and angles [deg] for Cd2TeO3Cl2.
--

Cd(1)-O(1)	2.2374(17)	O(3)#1-Cd(1)-Cl(2)#2	146.56(4)
Cd(1)-O(2)#1	2.4199(17)	O(3)#4-Cd(1)-O(2)#1	125.77(6)
Cd(1)-O(3)#1	2.3674(16)	O(3)#4-Cd(1)-O(3)#1	76.11(6)
Cd(1)-O(3)#4	2.3063(16)	O(3)#4-Cd(1)-Cl(2)	79.92(4)
Cd(1)-Cl(1)#3	2.8816(7)	O(3)#4-Cd(1)-Cl(2)#2	77.84(4)
Cd(1)- $Cl(2)$	2.6528(6)	O(3)#4-Cd(1)-Cl(1)#3	80.63(4)
Cd(1)-Cl(2)#2	2.7893(6)	Cl(2)-Cd(1)-Cl(1)#3	154.518(18)
Cd(2)-O(1)#6	2.2765(16)	Cl(2)-Cd(1)-Cl(2)#2	82.66(2)
Cd(2)-O(2)	2.2228(17)	Cl(2)#2-Cd(1)-Cl(1)#3	77.270(17)
Cd(2)-O(3)#1	2.3298(17)	O(1)#6-Cd(2)-O(3)#1	105.16(6)
Cd(2)- $Cl(1)$	2.6450(6)	O(1)#6-Cd(2)-Cl(1)	86.45(5)
Cd(2)-Cl(1)#3	2.7369(6)	O(1)#6-Cd(2)-Cl(1)#3	158.84(5)
Cd(2)-Cl(2)#5	2.7174(6)	O(1)#6-Cd(2)-Cl(2)#5	80.00(4)
Te(1)-O(1)	1.8801(16)	O(2)-Cd(2)-O(1)#6	117.67(6)
Te(1)-O(2)	1.8481(17)	O(2)-Cd(2)-O(3)#1	88.59(6)
Te(1)-O(3)	1.8986(16)	O(2)-Cd(2)-Cl(1)	94.73(5)
O(1)-Cd(1)-O(2)#1	78.36(6)	O(2)-Cd(2)-Cl(1)#3	81.97(5)
O(1)-Cd(1)-O(3)#1	121.79(6)	O(2)-Cd(2)-Cl(2)#5	160.50(5)
O(1)-Cd(1)-O(3)#4	155.69(6)	O(3)#1-Cd(2)-Cl(1)	164.78(4)
O(1)-Cd(1)-Cl(1)#3	87.01(5)	O(3)#1-Cd(2)-Cl(1)#3	81.81(4)
O(1)-Cd(1)-Cl(2)#2	79.06(4)	O(3)#1-Cd(2)-Cl(2)#5	78.16(4)
O(2)#1-Cd(1)-Cl(1)#3	125.50(4)	Cl(1)-Cd(2)-Cl(1)#3	83.954(19)
O(2)#1-Cd(1)-Cl(2)	79.55(4)	Cl(1)-Cd(2)-Cl(2)#5	94.59(2)
O(2)#1-Cd(1)-Cl(2)#2	146.59(4)	Cl(2)#5-Cd(2)-Cl(1)#3	82.025(19)
O(3)#1-Cd(1)-O(2)#1	66.85(6)	O(1)-Te(1)-O(3)	94.69(7)
O(3)#1-Cd(1)-Cl(1)#3	78.13(4)	O(2)-Te(1)-O(1)	101.79(8)
O(3)#1-Cd(1)-Cl(2)	112.66(4)	O(2)-Te(1)-O(3)	89.47(7)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 -x+2,-y,-z+1 #3 -x+1,-y+1,-z #4 x,y-1,z #5 -x+1,-y,-z+1 #6 x-1,y,z #7 x,y+1,z #8 x+1,y,z

Fig. S1 The EDS spectrum, SEM image, and EDS mappings of Cd₂TeO₃Cl₂.

Fig. S2 The powder XRD patterns of $Cd_2TeO_3Cl_2$ before and after heating experiments, where $CdCl_2$ (PDF #09-0401) and $CdTeO_3$ (PDF #22-0129) XRD patterns used as the references.