Unexpected structural preference with metallophilic Ag--- Au contacts in silver(I)-N heterocyclic carbene cluster; experimental and theoretical approach

PriyankaSahu,^a Narayan C Jana,^bSahadevBarik, ^b Hemanta K. Kisan, ^c AvtarChangotra,^dAnvarhusein A. Isab,^eJoydevDinda^{*a}

^aDepartment of Chemistry, Utkal University, Bhubaneswar-751004, Odisha, India. ^bSchool of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha,751004, India.

^cDepartment of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India.

^dSchool of Science, Department of Chemistry, Cluster University of Jammu, Jammu-180001, India.

^eDepartment of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran-31261,Saudi Arabia

Electronic Supplementary Information (ESI)

Table of contents:

Table S1: Summary of key crystallographic data of 2 & 3 .	3
Table S2: Summary of selected bond distances (Å).	4
Table S3: Summary of selected bond angles (°).	4-5
Table S4: Vertical electronic transition as computed at TD-DFT SMD _(acetonitrile)	6
B3LYP-D3/def2-TZVP (Ag), 6-31G** (C, H, N) level of theory for complex 2 .	
Table S5: Vertical electronic transition as computed at TD-DFT SMD _(acetonitrile)	6
B3LYP-D3/def2-TZVP (Ag, Au), 6-31G** (C, H, N, Cl) level of theory for	
complex 3 .	
Table S6: Estimated strengths in complex 2 and complex 3 through the bond	7-8
critical point (ρ) in a.u. The topological parameters are derived from Atoms-in-	
Molecules (AIM) analysis on optimized geometry computed at the B3LYP-	
D3/def2-TZVP (Ag, Au), 6-31G** (C, H, N) level of theory.	
Fig. S1: ¹ HNMR spectra of $1.HPF_6$.	9
Fig. S2: 13 CNMR spectra of 1.HPF ₆ .	9
Fig. S3: ¹ HNMR spectra of complex 2 .	10
Fig. S4: ¹³ CNMR spectra of complex 2 .	10
Fig. S5: ¹ HNMR spectra of complex 3 .	11
Fig. S6: ¹³ CNMR spectra of complex 3 .	11
Fig. S7: HR-MS spectra of complex 2.	12
Fig. S8: HR-MS spectra of complex 3 .	12

Figure S9:Mass spectrometry: experimental data (top) and isotopic pattern	13
simulations (bottom) of complex 3 .	
Fig. S10: UV-Vis spectra of $1.HPF_6$, complex 2, and complex 3 at 0.05 mM at	14
room temperature.	
Fig. S11:Molecular orbitals obtained for 2 at TD-DFT SMD _(acetonitrile) / B3LYP-	15
D3/def2-TZVP (Ag), 6-31G** (C, H, N) level of theory.	
Fig. S12:Molecular orbitals obtained for 3 at TD-DFT $SMD_{(acetonitrile)} / B3LYP-$	16
D3/def2-TZVP (Ag, Au), 6-31G** (C, H, N, Cl) level of theory.	
References	17

	2	3
Empirical formula	$C_{65}H_{62}Ag_3F_{18}N_{19}P_3'$	'C_{44.50} H_{45} Ag_2 Au Cl F_{12} N_{13}
		O _{0.50} P ₂ '
Formula weight	1867.85	1508.03
Crystal system	'trigonal'	'monoclinic'
Space group	'P-3 c 1'	'I12/m1'
Temperature (K)	100.01(10)	100.00(10)
Cell dimensions		
a (Å)	23.0541(3)	14.2719(4)
b (Å)	23.0541(3)	24.7697(6)
c (Å)	23.7591(4)	14.7213(4)
α(°)	90	90
β(°)	90	96.862(3)
γ(°)	120	90
Volume(Å ³)	10936.0(3)	5166.9(2)
Z	6	4
Density (Mg m ⁻³)	1.702	1.939
Absorption coefficient	0.965	3.789
F(000)	5598	2940
Theta range for data	1.9630-30.6820	3.7680-30.6130
collection		
Index ranges	-29<=h<=28,-31<=k<=32,-	-17<=h<=18,-32<=k<=32,-
	28<=1<= 30	19<=l<= 18
Reflections collected	8104	5596
Independent reflections	9586	6503
GOF	1.023	1.050
Final R indices	R1=0.0324, wR2=0.0760	R1=0.0427, wR2=0.0927
[I>2sigma(I)]		
R indices (all data)	R1=0.0413, wR2=0.0813	R1=0.0529, wR2=0.0959

 Table S1:Summary of key crystallographic data of 2 and 3.

	2			3	
	Experimental	Theoretical		Experimental	Theoretical
Ag(1)-Ag(1)	2.7725(3)	2.8856	Au(1)-Ag(1)	3.1006(4)	3.5003
Ag(2)-Ag(2)	2.7539(3)	2.8848	Ag(1)-Cl(1)	2.5476(10)	2.6340
Ag(1)-C(12)	2.257(2)	2.3137	Au(1)-C(10)	2.036(5)	2.0582
Ag(1)-N(1)	2.3281(18)	2.3769	Ag(1)-N(1)	2.240(4)	2.2969
Ag(1)-N(5)	2.3294(18)	2.3769	Ag(1)-N(5)	2.229(4)	2.2767

Table S2:Summary of selected bond distances (Å) of **2** and **3**. The theoretical values are obtained at B3LYP-D3/def2-TZVP (Ag, Au), 6-31G** (C, H, N, Cl) level of theory.^{1,2,3}

Table S3:Summary of selected bond angles (°)of **2** and **3**. The theoretical values are obtainedat B3LYP-D3/def2-TZVP (Ag, Au), 6-31G** (C, H, N, Cl) level of theory.

	2			3	
	Experimental	Theoretical		Experimental	Theoretical
Ag(1)-Ag(1)-	60.0	60.01	Ag(1)-Au(1)-	66.136(13)	60.33
Ag(1)			Ag(1)		
Ag(1)-C(12)-	52.01(5)	51.34	Ag(1)-Cl(1)-	83.22(4)	83.79
Ag(1)			Ag(1)		
Ag(1)-C(12)-	52.53(5)	51.45	Cl(1)-Ag(1)-	105.32(2)	176.57
Ag(1)			Au(1)		
C(12)-Ag(1)-	112.48(5)	111.50	Ag(1)-Au(1)-	60.46(11)	59.20
Ag(1)			C(10)		
C(12)-Ag(1)-	111.96(5)	111.29	Ag(1)-Au(1)-	126.58(11)	117.42
Ag(1)			C(10)		
C(12)-Ag(1)-	163.84(7)	162.94	C(10)-Au(1)-	173.0(2)	176.57
C(12)			C(10)		
N(1)-Ag(1)-	117.22(5)	113.10	N(1)-Ag(1)-	98.50(9)	71.72
Ag(1)			Au(1)		
N(1)-Ag(1)-	125.21(5)	123.37	N(1)-Ag(1)-	110.02(9)	112.11
Ag(1)			Cl(1)		
C(12)-Ag(1)-	99.80(7)	103.78	N(1)-Ag(1)-	126.64(14)	152.92
N(1)			N(5)		
C(12)-Ag(1)-	85.92(7)	85.72	N(5)-Ag(1)-	101.68(9)	97.77
N(1)			Au(1)		

N(1)-Ag(1)-	105.76(7)	114.09	N(5)-Ag(1)-	111.24(9)	94.79
N(5)			Cl(1)		
N(4)-C(12)-	103.45(18)	103.63	N(4)-C(10)-	104.7(4)	104.39
N(3)			N(3)		
N(5)-Ag(1)-	115.22(5)	113.13			
Ag(1)					
N(5)-Ag(1)-	128.70(5)	123.36			
Ag(1)					
C(12)-Ag(1)-	107.86(7)	103.64			
N(5)					
C(12)-Ag(1)-	85.27(7)	85.73			
N(5)					

$E_{e}(eV)$	$\lambda_{theo} (nm)$	Osc. Strength (f)	Key transitions
4.1055	301.99	0.1065	HOMO→LUMO
4.1106	301.62	0.1073	HOMO-1→LUMO
4.1291	300.27	0.0135	HOMO-2→LUMO
4.3981	281.91	0.0100	HOMO-1→LUMO+3
4.5208	274.25	0.0111	HOMO→LUMO+5
4.5593	271.94	0.0580	HOMO→LUMO-4
4.5596	271.92	0.0589	HOMO-1→LUMO+4
4.7064	263.44	0.0191	HOMO-3→LUMO
4.7068	263.41	0.0198	HOMO-4→LUMO

Table S4: Vertical electronic transition as computed at TD-DFT SMD_(acetonitrile) B3LYP-D3/def2-TZVP (Ag), 6-31G** (C, H, N) level of theory for complex 2.

Table S5: Vertical electronic transition as computed at TD-DFT SMD_(acetonitrile) B3LYP-D3/def2-TZVP (Ag, Au), 6-31G** (C, H, N, Cl) level of theory for complex 3.

E _e (eV)	$\lambda_{\text{theo}} (nm)$	Osc. Strength (f)	Key transitions
4.1471	298.97	0.0133	HOMO→LUMO
4.4537	278.39	0.0102	HOMO-2→LUMO
4.4765	276.96	0.0181	HOMO-5→LUMO
4.5639	271.66	0.0366	HOMO→LUMO+1
4.6676	265.63	0.0206	HOMO-12→LUMO
4.6951	264.07	0.2297	HOMO-11→LUMO
4.7123	263.11	0.0181	HOMO-1→LUMO+1
4.7411	261.51	0.0382	HOMO-3→LUMO+1
4.7509	260.97	0.0331	HOMO-10→LUMO+1
4.7770	259.54	0.0517	HOMO-9→LUMO+1
4.7998	258.31	0.0384	HOMO-8→LUMO
4.8151	257.49	0.0174	HOMO-7→LUMO

Table S6: Estimated strengths in complex **2** and complex **3** through the bond critical point (ρ) in a.u. The topological parameters are derived from Atoms-in-Molecules (AIM) analysis on optimized geometry computed at the B3LYP-D3/def2-TZVP (Ag, Au), 6-31G** (C, H, N) level of theory.

	ρ	∇²ρ	G	V=1/4∇²ρ-2G	E=1/2(V)	E (kcal/mol)
a	0.065	-0.044	0.057	-0.125	-0.062	-38.9
b	0.050	-0.053	0.054	-0.121	-0.060	-37.6
С	0.050	-0.053	0.054	-0.121	-0.060	-37.6
d	0.065	-0.044	0.057	-0.125	-0.062	-38.9
e	0.065	-0.044	0.057	-0.125	-0.062	-38.9
ſ	0.049	-0.052	0.054	-0.121	-0.060	-37.6
g	0.049	-0.053	0.054	-0.121	-0.060	-37.6
h	0.065	-0.045	0.057	-0.125	-0.062	-38.9
i	0.065	-0.044	0.057	-0.125	-0.062	-38.9
j	0.050	-0.053	0.055	-0.123	-0.061	-38.3
k	0.050	-0.053	0.055	-0.123	-0.061	-38.3
l	0.065	-0.044	0.057	-0.125	-0.062	-38.9
Tot	al Energy	7				-460.4

Ag-Ag-Au

	ρ	$\nabla^2 ho$	G	V=1/4 7 °ρ-2G	E=1/2(V)	E (kcal/mol)
a	0.007	-0.006	0.005	-0.011	-0.005	-3.1
b	0.013	-0.010	0.009	-0.020	-0.01	-6.3
С	0.007	-0.006	0.005	-0.011	-0.005	-3.1
d	0.013	-0.010	0.009	-0.020	-0.01	-6.3
e	0.043	-0.036	0.040	-0.089	-0.044	-27.6
f	0.043	-0.036	0.040	-0.089	-0.044	-27.6
g	0.061	-0.067	0.071	-0.159	-0.079	-49.6
h	0.015	-0.011	0.010	-0.023	-0.011	-6.9
i	0.057	-0.064	0.067	-0.15	-0.075	-47.1
j	0.057	-0.064	0.067	-0.15	-0.075	-47.1
k	0.015	-0.011	0.010	-0.023	-0.011	-6.9
l	0.061	-0.067	0.071	-0.159	-0.079	-49.6
т	0.133	-0.054	0.119	-0.251	-0.125	-78.4
n	0.133	-0.054	0.119	-0.251	-0.125	-78.4
Tot	al Energy	y				-438.0

Figure S1:¹HNMR spectra of 1.HPF₆.

Figure S2:¹³CNMR spectra of 1.HPF₆.

Figure S3:¹H NMR spectra of complex 2.

Figure S4:¹³C NMR spectra of complex 2.

Figure S5:¹H NMR spectra of complex 3.

Figure S6:¹³C NMR spectra of complex 3.

Figure S7:HR-MS spectra of complex 2.

Figure S8:HR-MS spectra of complex 3.

Figure S9: Mass spectrometry: experimental data (top) and isotopic pattern simulations (bottom) of complex 3.

Figure S10: UV-Vis spectra of **1.**HPF₆, complex **2**, and complex **3** at 0.05 mM conc. at room temperature.

Figure S11. Molecular orbitals obtained for **2** at TD-DFT SMD_(acetonitrile) / B3LYP-D3/def2-TZVP (Ag), 6-31G** (C, H, N) level of theory.

Figure S12. Molecular orbitals obtained for **3**at TD-DFT SMD_(acetonitrile) / B3LYP-D3/def2-TZVP (Ag, Au), 6-31G** (C, H, N, Cl) level of theory.

References:

- 1. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104– 154119.
- 2. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
- 3. V. A. Rassolov, J. A.Pople, M. A. Ratner and T. Windus, J. Chem. Phys., 1998, 109, 1223–1229.