Supplementary Information

B-substituted group 1 phosphides: Synthesis and reactivity[†]

Michal Aman,^a Libor Dostál,^a Aleš Růžička,^a Zdenka Růžičková,^a Roman Jambor^{a*}

^a Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic, E-mail: <u>roman.jambor@upce.cz</u>,

Figure S1. PovRay presentation of molecular structure of 3 . Hydrogen atoms are omitted for clarity	S4
Figure S2. ¹ H NMR (C ₆ D ₆ , 500.13 MHz) of 1-BCy ₂ -8-PCl ₂ -C ₁₀ H ₆ (1)	S2
Figure S3. ¹³ C{ ¹ H} NMR (C ₆ D ₆ , 125.77 MHz) of 1-BCy ₂ -8-PCl ₂ -C ₁₀ H ₆ (1)	S6
Figure S4. ¹¹ B{ ¹ H} NMR (C ₆ D ₆ , 160.57 MHz) of 1-BCy ₂ -8-PCl ₂ -C ₁₀ H ₆ (1)	S7
Figure S5. ³¹ P{ ¹ H} NMR (C ₆ D ₆ , 202.49 MHz) of 1-BCy ₂ -8-PCl ₂ -C ₁₀ H ₆ (1)	S8
Figure S6. ¹ H NMR (C ₆ D ₆ , 500.13 MHz) of 1-BCy ₂ -8-PPhCl-C ₁₀ H ₆ (2)	
Figure S7. ¹³ C{ ¹ H} NMR (C ₆ D ₆ , 125.77 MHz) of 1-BCy ₂ -8-PPhCl-C ₁₀ H ₆ (2)	S10
Figure S8. ¹¹ B{ ¹ H} NMR (C ₆ D ₆ , 160.57 MHz) of 1-BCy ₂ -8-PPhCl-C ₁₀ H ₆ (2)	S11
Figure S9. ³¹ P{ ¹ H} NMR (C ₆ D ₆ , 202.49 MHz) of 1-BCy ₂ -8-PPhCl-C ₁₀ H ₆ (2)	S12
Figure S10. ¹ H NMR (THF-d ₈ , 500.13 MHz) of {1-BCy-8-PCy-C ₁₀ H ₆ } ₂ (3)	S13
Figure S11. ¹³ C{ ¹ H} NMR (THF-d ₈ , 125.77 MHz) of {1-BCy-8-PCy-C ₁₀ H ₆ } ₂ (3)	S14
Figure S12. ¹¹ B{ ¹ H} NMR (THF-d ₈ , 160.57 MHz) of {1-BCy-8-PCy-C ₁₀ H ₆ } ₂ (3)	S15
Figure S13. ³¹ P{ ¹ H} NMR (THF-d ₈ , 202.49 MHz) of {1-BCy-8-PCy-C ₁₀ H ₆ } ₂ (3)	S16
Figure S14. ¹ H NMR (THF-d _{8,} 500.13 MHz) of {1-BCy ₂ -8-PPh-C ₁₀ H ₆ } ₂ (4)	S17
Figure S15. ¹³ C{ ¹ H} NMR (THF-d ₈ , 125.77 MHz) of {1-BCy ₂ -8-PPh-C ₁₀ H ₆ } ₂ (4)	S18
Figure S16. ¹¹ B{ ¹ H} NMR (THF-d ₈ , 160.57 MHz) of {1-BCy ₂ -8-PPh-C ₁₀ H ₆ } ₂ (4)	S19
Figure S17. ${}^{31}P{}^{1}H{NMR}$ (THF-d ₈ , 202.49 MHz) of {1-BCy ₂ -8-PPh-C ₁₀ H ₆ } (4)	S20
Figure S18. ¹ H NMR (THF-d ₈ , 500.13 MHz) of [Na(THF) ₃] ⁺ [1-BCy ₂ -8-PPh-C ₁₀ H ₆] ⁻ (5)	S21
Figure S19. ¹³ C{ ¹ H} NMR (THF-d ₈ , 125.77 MHz) of [Na(THF) ₃] ⁺ [1-BCy ₂ -8-PPh-C ₁₀ H ₆] ⁻ (5)	S22
Figure S20. ¹¹ B{ ¹ H} NMR (THF-d ₈ , 160.57 MHz) of [Na(THF) ₃] ⁺ [1-BCy ₂ -8-PPh-C ₁₀ H ₆] ⁻ (5)	S23
Figure S21. ³¹ P{ ¹ H} NMR (THF-d ₈ , 202.49 MHz) of [Na(THF) ₃] ⁺ [1-BCy ₂ -8-PPh-C ₁₀ H ₆] ⁻ (5)	S24
Figure S22. ¹ H NMR (THF-d _{8,} 500.13 MHz) of {[K(THF) ₂]+[1-BCy ₂ -8-PPh-C ₁₀ H ₆] ⁻ } _∞ (6)	S25
Figure S23. ¹³ C{ ¹ H} NMR (THF-d ₈ , 125.77 MHz) of {[K(THF) ₂] ⁺ [1-BCy ₂ -8-PPh-C ₁₀ H ₆] ⁻ } _{∞} (6)	S26
Figure S24. ¹¹ B{ ¹ H} NMR (THF-d ₈ , 160.57 MHz) of {[K(THF) ₂] ⁺ [1-BCy ₂ -8-PPh-C ₁₀ H ₆] ⁻ } _{∞} (6)	S27
Figure S25. ³¹ P{ ¹ H} NMR (THF-d ₈ , 202.49 MHz) of {[K(THF) ₂]+[1-BCy ₂ -8-PPh-C ₁₀ H ₆]-} ∞ (6)	S28
Figure S26. ¹ H NMR (THF-d ₈ , 500.13 MHz) of {[Na(THF) ₂] ⁺ [1-BCy ₂ -8-P(O)Ph-C ₁₀ H ₆] ⁻ } ₂ (7)	S29
Figure S27. ¹³ C{ ¹ H} NMR (THF-d ₈ , 125.77 MHz) of {[Na(THF) ₂] ⁺ [1-BCy ₂ -8-P(O)Ph-C ₁₀ H ₆] ⁻ } ₂ (7)	\$30
Figure S28. ¹¹ B{ ¹ H} NMR (THF-d ₈ , 160.57 MHz) of {[Na(THF) ₂] ⁺ [1-BCy ₂ -8-P(O)Ph-C ₁₀ H ₆] ⁻ } ₂ (7)	
Figure S29. ³¹ P{ ¹ H} NMR (THF-d ₈ , 202.49 MHz) of {[Na(THF) ₂] ⁺ [1-BCy ₂ -8-P(O)Ph-C ₁₀ H ₆] ⁻ } ₂ (7)	
Figure S30. ¹ H NMR (C ₆ D ₆ , 500.13 MHz) of {[Na(THF) ₂] ⁺ [1-BCy ₂ -8-P(S)Ph-C ₁₀ H ₆] ⁻ } ₂ (8)	
Figure S31. ¹³ C{ ¹ H} NMR (C ₆ D ₆ , 125.77 MHz) of {[Na(THF) ₂] ⁺ [1-BCy ₂ -8-P(S)Ph-C ₁₀ H ₆] ⁻ } ₂ (8)	\$34
Figure S32. ¹¹ B{ ¹ H} NMR (C ₆ D ₆ , 160.57 MHz) of {[Na(THF) ₂] ⁺ [1-BCy ₂ -8-P(S)Ph-C ₁₀ H ₆] ⁻ } ₂ (8)	\$35
Figure S33. ³¹ P{ ¹ H} NMR (C ₆ D ₆ , 202.49 MHz) of {[Na(THF) ₂] ⁺ [1-BCy ₂ -8-P(S)Ph-C ₁₀ H ₆] ⁻ } ₂ (8)	\$36
Figure S34. ¹ H NMR (THF-d ₈ , 500.13 MHz) of {[Na(THF) ₂] ⁺ [1-BCy ₂ -8-P(Se)Ph-C ₁₀ H ₆] ⁻ } ₂ (9)	
Figure S35. ${}^{13}C{}^{1}H$ NMR (THF-d ₈ , 125.77 MHz) of {[Na(THF) ₂]+ [1-BCy ₂ -8-P(Se)Ph-C ₁₀ H ₆]-} ₂ (9)	\$38
Figure S36. ¹¹ B{ ¹ H} NMR (THF-d ₈ , 160.57 MHz) of {[Na(THF) ₂] ⁺ [1-BCy ₂ -8-P(Se)Ph-C ₁₀ H ₆] ⁻ } ₂ (9)	\$39
Figure S37. ³¹ P{ ¹ H} NMR (THF-d ₈ , 202.49 MHz) of { $[Na(THF)_2]^+ [1-BCy_2-8-P(Se)Ph-C_{10}H_6]^-$ } (9)	S40
Figure S38. ¹ H NMR (THF-d _{8,} 500.13 MHz) of {[Na(THF) ₂] ⁺ [1-BCy ₂ -8-P{CH=C(O)C(Me)O}Ph-C ₁₀ H ₆] ⁻ } ₂ (10)	S41
Figure S39. ¹³ C{ ¹ H} NMR (THF-d ₈ , 125.77 MHz) of {[Na(THF) ₂] ⁺ [1-BCy ₂ -8-P{CH=C(O)C(Me)O}Ph-C ₁₀ H ₆] ⁻ } ₂ (10)	S42
Figure S40. ¹¹ B{ ¹ H} NMR (THF-d ₈ , 160.57 MHz) of {[Na(THF) ₂] ⁺ [1-BCy ₂ -8-P{CH=C(O)C(Me)O}Ph-C ₁₀ H ₆] ⁻ } ₂ (10)	S43
Figure S41. ³¹ P{ ¹ H} NMR (THF-d ₈ , 202.49 MHz) of {[Na(THF) ₂]+ [1-BCy ₂ -8-P{CH=C(O)C(Me)O}Ph-C ₁₀ H ₆]- $\frac{1}{2}$ (10)	S44
Figure S42. ¹ H- ¹ H COSY NMR of {[Na(THF) ₂] ⁺ [1-BCy ₂ -8-P{CH=C(O)C(Me)O}Ph-C ₁₀ H ₆] ⁻ } ₂ (10)	S45
Figure S43. ¹ H- ¹³ C HSQC NMR of {[Na(THF) ₂] ⁺ [1-BCy ₂ -8-P{CH=C(O)C(Me)O}Ph-C ₁₀ H ₆] ⁻ } ₂ (10)	S46
Figure S44. ¹ H NMR (THF-d _{8,} 500.13 MHz) of [1-BCy ₂ -8-P{C(O)tBu}Ph-C ₁₀ H ₆] (11)	S47
Figure S45. ¹³ C{ ¹ H} NMR (THF-d ₈ , 125.77 MHz) of [1-BCy ₂ -8-P{C(O)tBu}Ph-C ₁₀ H ₆] (11)	S48
Figure S46. ¹¹ B{ ¹ H} NMR (THF-d ₈ , 160.57 MHz) of [1-BCy ₂ -8-P{C(O)tBu}Ph-C ₁₀ H ₆] (11)	S49
Figure S47. ³¹ P{ ¹ H} NMR (THF-d ₈ , 202.49 MHz) of [1-BCy ₂ -8-P{C(O)tBu}Ph-C ₁₀ H ₆] (11)	\$50
Figure S48. ¹ H NMR (THF-d ₈ , 500.13 MHz) of [1-BCy ₂ -8-P(SnL)Ph-C ₁₀ H ₆] (12)	\$51
Figure S49. ¹³ C{ ¹ H} NMR (THF-d ₈ , 125.77 MHz) of [1-BCy ₂ -8-P(SnL)Ph-C ₁₀ H ₆] (12)	\$52
Figure S50. ¹¹ B{ ¹ H} NMR (THF-d ₈ , 160.57 MHz) of [1-BCy ₂ -8-P(SnL)Ph-C ₁₀ H ₆] (12)	\$53
Figure S51. ³¹ P{ ¹ H} NMR (THF-d ₈ , 202.49 MHz) of $[1-BCy_2-8-P(SnL)Ph-C_{10}H_6]$ (12)	\$54
Figure S52. ¹¹⁹ Sn{ ¹ H} NMR (THF-d ₈ , 186.52 MHz) of [1-BCy ₂ -8-P(SnL)Ph-C ₁₀ H ₆] (12)	\$55
Figure S53. ¹ H NMR (C ₆ D ₆ , 500.13 MHz) of [1-BCy ₂ -8-P(PbL)Ph-C ₁₀ H ₆] (13)	\$56
Figure S54. ¹³ C{ ¹ H} NMR (C ₆ D ₆ , 125.77 MHz) of [1-BCy ₂ -8-P(PbL)Ph-C ₁₀ H ₆] (13)	\$57
Figure S55. ¹¹ B{ ¹ H} NMR (C ₆ D ₆ , 160.57 MHz) of [1-BCy ₂ -8-P(PbL)Ph-C ₁₀ H ₆] (13)	\$58
Figure S56. ³¹ P{ ¹ H} NMR (C_6D_6 , 202.49 MHz) of [1-BCy ₂ -8-P(PbL)Ph- $C_{10}H_6$] (13)	\$59
Figure S57. ²⁰⁹ Pb{ ¹ H} NMR (C ₆ D ₆ , 104.64 MHz) of [1-BCy ₂ -8-P(PbL)Ph-C ₁₀ H ₆] (13)	S60
Figure S58. The ³¹ P{ ¹ H} NMR spectra of the reaction mixture of 5 and 2,3-butanedione	S61

Figure S59. ¹ H NMR spectrum of H_2 in THF/C ₆ D ₆ Solution Soluti	52
Figure S60. Expended part of the 1 H NMR spectrum of the reaction mixture of 5 and 2,3-butanedione in THF/C ₆ D ₆ S	63
Table S1. Crystallographic data of compounds 3 , 4 ·(C ₄ H ₈ O), 5 , 6 , 7 , 9, 10 ·2(C ₄ H ₈ O), 11 , and 12 ·0.5(C ₇ H ₈)	64

Figure S1. PovRay presentation of molecular structure of **3**. Hydrogen atoms are omitted for clarity.

Figure S2. ¹H NMR (C₆D₆, 500.13 MHz) of 1-BCy₂-8-PCl₂-C₁₀H₆ (1)

Figure S3. ${}^{13}C{}^{1H}$ NMR (C₆D₆, 125.77 MHz) of 1-BCy₂-8-PCl₂-C₁₀H₆(1)

Figure S4. ¹¹B{¹H} NMR (C_6D_6 , 160.57 MHz) of 1-BCy₂-8-PCl₂- $C_{10}H_6$ (1)

Figure S5. ³¹P{¹H} NMR (C₆D₆, 202.49 MHz) of 1-BCy₂-8-PCl₂-C₁₀H₆ (**1**)

S9

Figure S7. $^{13}C\{^{1}H\}$ NMR (C_6D_6, 125.77 MHz) of 1-BCy_2-8-PPhCl-C_{10}H_6 (**2**)

Figure S8. ¹¹B{¹H} NMR (C_6D_6 , 160.57 MHz) of 1-BCy₂-8-PPhCl- $C_{10}H_6$ (2)

Figure S9. ${}^{31}P{}^{1}H$ NMR (C_6D_6 , 202.49 MHz) of 1-BCy₂-8-PPhCl- $C_{10}H_6$ (**2**)

Figure S10. ¹H NMR (THF-d₈, 500.13 MHz) of {1-BCy-8-PCy-C₁₀H₆}₂ (**3**)

Figure S11. ¹³C{¹H} NMR (THF-d₈, 125.77 MHz) of {1-BCy-8-PCy-C₁₀H₆}₂ (**3**)

Figure S12. ¹¹B{¹H} NMR (THF-d₈, 160.57 MHz) of {1-BCy-8-PCy-C₁₀H₆}₂ (**3**)

Figure S13. ${}^{31}P{}^{1}H{}$ NMR (THF-d₈, 202.49 MHz) of {1-BCy-8-PCy-C₁₀H₆}₂ (**3**)

Figure S14. ¹H NMR (THF-d₈, 500.13 MHz) of {1-BCy₂-8-PPh-C₁₀H₆}₂ (4)

Figure S15. ¹³C{¹H} NMR (THF-d₈, 125.77 MHz) of {1-BCy₂-8-PPh-C₁₀H₆}₂ (4)

Figure S16. ¹¹B{¹H} NMR (THF-d₈, 160.57 MHz) of {1-BCy₂-8-PPh-C₁₀H₆}₂ (4)

Figure S17. ${}^{31}P_{1}^{1}H_{1}^{3}NMR$ (THF-ds, 202.49 MHz) of {1-BCy₂-8-PPh-C₁₀H₆} (4)

Figure S18. ¹H NMR (THF-d₈, 500.13 MHz) of [Na(THF)₃]⁺ [1-BCy₂-8-PPh-C₁₀H₆]⁻ (**5**)

Figure S19. ¹³C{¹H} NMR (THF-d₈, 125.77 MHz) of [Na(THF)₃]⁺ [1-BCy₂-8-PPh-C₁₀H₆]⁻ (**5**)

Figure S20. ¹¹B{¹H} NMR (THF-d₈, 160.57 MHz) of [Na(THF)₃]⁺ [1-BCy₂-8-PPh-C₁₀H₆]⁻ (**5**)

Figure S21. ${}^{31}P{}^{1}H{}$ NMR (THF-d₈, 202.49 MHz) of [Na(THF)₃]⁺ [1-BCy₂-8-PPh-C₁₀H₆]⁻ (5)

Figure S22. ¹H NMR (THF-d₈, 500.13 MHz) of {[K(THF)₂]⁺ [1-BCy₂-8-PPh-C₁₀H₆]⁻}_∞ (6)

Figure S23. ¹³C{¹H} NMR (THF-d₈, 125.77 MHz) of { $[K(THF)_2]^+$ [1-BCy₂-8-PPh-C₁₀H₆]⁻}_∞ (6)

Figure S24. ¹¹B{¹H} NMR (THF-d₈, 160.57 MHz) of {[K(THF)₂]+ $[1-BCy_2-8-PPh-C_{10}H_6]^-$ } (6)

Figure S25. ³¹P{¹H} NMR (THF- d_8 , 202.49 MHz) of {[K(THF)₂]+ [1-BCy₂-8-PPh- $C_{10}H_6$]⁻} $_{\infty}$ (6)

Figure S27. ¹³C{¹H} NMR (THF-d₈, 125.77 MHz) of {[Na(THF)₂]+ [1-BCy₂-8-P(O)Ph-C₁₀H₆]-}₂ (**7**)

Figure S28. ¹¹B{¹H} NMR (THF-d₈, 160.57 MHz) of {[Na(THF)₂]⁺ [1-BCy₂-8-P(O)Ph-C₁₀H₆]⁻}₂ (7)

Figure S29. ³¹P{¹H} NMR (THF-d₈, 202.49 MHz) of {[Na(THF)₂]⁺ [1-BCy₂-8-P(O)Ph-C₁₀H₆]⁻}₂ (7)

Figure S33. ³¹P{¹H} NMR (C_6D_6 , 202.49 MHz) of {[Na(THF)₂]⁺ [1-BCy₂-8-P(S)Ph- $C_{10}H_6$]⁻}₂ (**8**)

Figure S34. ¹H NMR (THF-d₈, 500.13 MHz) of {[Na(THF)₂]⁺ [1-BCy₂-8-P(Se)Ph-C₁₀H₆]⁻}₂ (**9**)

Figure S35. ${}^{13}C{}^{1}H$ NMR (THF-d₈, 125.77 MHz) of {[Na(THF)₂]⁺ [1-BCy₂-8-P(Se)Ph-C₁₀H₆]⁻}₂ (9)

S39

Figure S37. ³¹P{¹H} NMR (THF-d₈, 202.49 MHz) of {[Na(THF)₂]⁺ [1-BCy₂-8-P(Se)Ph-C₁₀H₆]⁻}₂ (**9**)

Figure S38. ¹H NMR (THF-d₈, 500.13 MHz) of {[Na(THF)₂]⁺ [1-BCy₂-8-P{CH=C(O)C(Me)O}Ph-C₁₀H₆]⁻}₂ (**10**)

Figure S39. ¹³C{¹H} NMR (THF-d₈, 125.77 MHz) of {[*Na*(*THF*)₂]+ [1-BCy₂-8-P{CH=C(O)C(Me)O}Ph-C₁₀H₆]-}₂ (**10**)

Figure S40. ¹¹B{¹H} NMR (THF-d₈, 160.57 MHz) of {[Na(THF)₂]⁺ [1-BCy₂-8-P{CH=C(0)C(Me)O}Ph-C₁₀H₆]⁻}₂ (**10**)

Figure S41. ${}^{31}P{}^{1}H$ NMR (THF-d₈, 202.49 MHz) of {[Na(THF)₂]+ [1-BCy₂-8-P{CH=C(O)C(Me)O}Ph-C₁₀H₆]-}₂ (10)

Figure S42. ¹H-¹H COSY NMR of $\{[Na(THF)_2]^+ [1-BCy_2-8-P\{CH=C(O)C(Me)O\}Ph-C_{10}H_6]^-\}_2$ (10)

Figure S43. ¹H-¹³C HSQC NMR of {[Na(THF)₂]⁺ [1-BCy₂-8-P{CH=C(O)C(Me)O}Ph-C₁₀H₆]⁺}₂ (**10**)

Figure S45. ¹³C{¹H} NMR (THF-d₈, 125.77 MHz) of [1-BCy₂-8-P{C(O)tBu}Ph-C₁₀H₆] (11)

Figure S47. ³¹P{¹H} NMR (THF-d₈, 202.49 MHz) of [1-BCy₂-8-P{C(O)tBu}Ph-C₁₀H₆] (11)

Figure S48. ¹H NMR (THF-d₈, 500.13 MHz) of [1-BCy₂-8-P(SnL)Ph-C₁₀H₆] (**12**)

Figure S49. ¹³C{¹H} NMR (THF-d₈, 125.77 MHz) of [1-BCy₂-8-P(SnL)Ph-C₁₀H₆] (12)

Figure S50. ¹¹B{¹H} NMR (THF-d₈, 160.57 MHz) of [1-BCy₂-8-P(SnL)Ph-C₁₀H₆] (**12**)

Figure S52. ¹¹⁹Sn{¹H} NMR (THF-d₈, 186.52 MHz) of [1-BCy₂-8-P(SnL)Ph-C₁₀H₆] (**12**)

Figure S53. ¹H NMR (C₆D₆, 500.13 MHz) of [1-BCy₂-8-P(PbL)Ph-C₁₀H₆] (**13**)

Figure S54. ¹³C{¹H} NMR (C₆D₆, 125.77 MHz) of [1-BCy₂-8-P(PbL)Ph-C₁₀H₆] (13)

Figure S55. ¹¹B{¹H} NMR (C₆D₆, 160.57 MHz) of [1-BCy₂-8-P(PbL)Ph-C₁₀H₆] (**13**)

S59

Figure S57. ²⁰⁹Pb{¹H} NMR (C₆D₆, 104.64 MHz) of [1-BCy₂-8-P(PbL)Ph-C₁₀H₆] (**13**)

S61

j.10 5.05 5.00 4.95 4.90 4.85 4.80 4.75 4.70 4.65 4.60 4.55 4.50 4.45 4.40 4.35 4.30 4.25 4.20 4.15 4.10 4.05 4.00 3.95 3.90 3.85 f1 (ppm)

Figure S59. ¹H NMR spectrum of H_2 in THF/C₆D₆

Figure S60. Expended part of the ¹H NMR spectrum of the reaction mixture of 5 and 2,3-butanedione in THF/C₆D₆.

Compound	3	4 ⋅(C ₄ H ₈ O)	5	6	7	9	10·2(C ₄ H ₈ O)	11	12·0.5(C ₇ H ₈)
Empirical formula	C44H56B2P2	C56H66B2P2 ·(C4H8O)	C40H57BNaO3P	C36H49BKO2P	C72H98B2Na2O6P2	C72H98B2Na2O4Se2P2	C ₈₀ H ₁₀₆ B ₂ Na ₂ O ₈ P ₂ , 2(C ₄ H ₈ O)	C33H42BOP	C ₄₀ H ₅₂ BNP Sn, 0.5(C ₇ H ₈)
Crystal system	Triclinic	Triclinic	orthorhombic	monoclinic	monoclinic	Triclinic	Triclinic	orthorhombic	monoclinic
Space group	<i>P</i> -1	<i>P</i> -1	Pna21	$P2_1/n$	P21/n	<i>P</i> -1	<i>P</i> -1	P-b-c-a	<i>P</i> 2 ₁ /n
a (Å)	11.682(3)	12.7391(4)	18.0350(18)	11.7259(5)	12.4520 (5)	10.3398(6)	11.2912(16)	12.4512(11)	10.6741(4)
b (Å)	13.1359(19	13.6807(5)	10.8962(10)	13.9936(5)	21.9900 (7)	11.6405(7)	12.339(2)	18.8303(14)	23.3192(9)
c (Å)	13.467(2))	16.2189(5)	19.662(4)	20.7353(8)	12.6888 (5)	14.3578(9)	15.225(3)	24.5695(19)	15.7863(6)
α (°)	73.078(5)	65.293(2)	90	90	90	93.217(2)	79.661(5)	90	90
β (°)	79.266(9)	80.363(2)	90	104.2330(10)	106.105 (2)	93.157(2)	79.404(6)	90	100.784(2)
γ (°)	71.317(9)	77.830(2)	90	90	90	102.117(2)	88.828(5)	90	90
Ζ	2	2	4	4	2	1	1	8	4
V (Å ³)	1863.1(6)	2500.14(15)	3863.9(9)	3298.0(2)	3338.1(2)	1682.99(18)	2051.1(6)	5760.6(8)	3860.0(3)
D _c (g cm ⁻³)	1.192	1.189	1.118	1.198	1.183	1.297	1.190	1.145	1.320
μ (mm ⁻¹)	0.148	0.128	0.117	0.240	0.129	1.206	0.121	0.119	0.740
Reflections measured	48821	61236	34880	97874	110937	67540	65674	25448	87950
independent (R _{int}) ^{a)}	41237 (0.0700)	11528 (0.1014)	8653 (0.0577)	7585 (0.0408)	7689 (0.0214)	6572 (0.0234)	9469 (0.0341)	4958 (0.0483)	8886 (0.0275)

Table S1: Crystallographic data of compounds **3**, **4**·(C₄H₈O), **5**, **6**, **7**, 9, **10**·2(C₄H₈O), **11**, and **12**·0.5(C₇H₈)

- observed [I>2σ(I)]	6207	7125	6656	5573	6481	6315	7330	4039	7437
Parameters refined	421	578	454	370	379	405	535	328	410
R ^{c)} / wR ^{c)}	0.0706 / 0.1307	0.0651 / 0.1508	0.0649 / 0.1652	0.0547 / 0.1509	0.0493 / 0.1205	0.0830 / 0.2510	0.0589 / 0.1672	0.0715 / 0.1435	0.0305 / 0.0678

 ${}^{a}R_{\text{int}} = \sum \left| F_{o}^{2} - F_{o,\text{mean}}^{2} \right| / \Sigma F_{o}^{2}, {}^{b}GOF = \left[\sum (w(F_{o}^{2} - F_{c}^{2})^{2}) / (N_{\text{diffrs}} - N_{\text{params}}) \right]^{\frac{1}{2}}, {}^{c}\text{Weighting scheme: } w = \left[\sigma^{2}(F_{o}^{2}) + (w_{1}P)^{2} + w_{2}P \right]^{-1}, \text{ where } P = \left[\max(F_{o}^{2}) + 2F_{c}^{2} \right], R(F) = \sum \left| F_{o} \right| - \left| F_{c} \right| \left| \Sigma \right| \left| F_{o} \right|, wR(F^{2}) = \left[\sum (w(F_{o}^{2} - F_{c}^{2})^{2}) / (\Sigma w(F_{o}^{2})^{2} - F_{c}^{2})^{2} \right] / \left[\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2}) / (\Sigma w(F_{o}^{2})^{2} - F_{c}^{2})^{2} \right] \right|^{\frac{1}{2}}$