Water-assisted synthesis of stable and multicolored $CsPbX_3@SiO_2$ core-shell nanoparticles as fluorescent probes for biosensing

Cynthia Collantes,^a William Teixeira,^a † Victoria González Pedro, *,^{a,b} María-José Bañuls,^{a,b} †‡ Pedro Quintero-Campos,^a Sergi Morais,^{a,b,c} and Ángel Maquieira ^{a,b,c}

^a Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain.

E-mail: vigonpe@upvnet.upv.es

^b Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, E46022 València, Spain.

^c Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, IIS La Fe, Valencia, Spain

SUPPORTING INFORMATION

Figure S1. UV-Vis absorption spectra of Cs_4PbX_6 NCs (X = Cl/Br, Br and I).

Figure S2. TEM images of Cs_4PbX_6 NC (X = Cl/Br, Br and I) and histograms of the particle size distribution.

Figure S3. Characterization by TEM of the resulting $CsPbX_3@SiO_2$ NPs starting from a) 14.4, b) 7.2, c) 3.6 mg/mL $Cs_4Pb(Cl_xBr_{6-x})$ NCs e) 6.4, f) 3.2, g) 1.6 mg/mL Cs_4PbBr_6 NCs, i) 8.8, j) 2.2 k) 1.1 mg/mL Cs_4PbI_6 NCs. PL intensity at maximum emission for different concentrations of precursor NCs (d, h, and l).

[Cs₄Pb(Cl _x Br _{6-x})] NCs (mg/mL)¹	Emission peak (nm)	Fwhm (nm)	Particle size (nm)	Core size (nm)	Cores/particle
7.2	483	26	30	11	1
3.6	486	20	32	3	1
1.8	486	19	32	3	1
0.9	490	19	32	-	-
[Cs₄PbBr ₆] NCs (mg/mL) ²	Emission peak (nm)	Fwhm (nm)	Particle size (nm)	Core size (nm)	Cores/particle
3.2	506	22	22	4	1
1.6	509	22	25	2	2
[Cs₄Pbl ₆] NCs (mg/mL) ³	Emission peak (nm)	Fwhm (nm)	Particle size (nm)	Core size (nm)	Cores/particle
2.2	689	33	33	2	5
1.1	692	38	15	-	-

Table S1. Description of the resulting $CsPbX_3@SiO_2$ samples prepared at different concentrations of Cs_4PbX_6 NCs

¹ The most concentrated sample (14.4 mg/mL) is heterogeneous, containing: cubes 9 nm, hexagonal crystals of 60 nm, spheres of 8 nm with inappreciable core.

² The most concentrated sample (25.7 mg/mL) is heterogeneous, containing: cubes 9 nm, hexagonal crystals of 60 nm, spheres of 8 nm with inappreciable core. The next sample (6.4 mg/mL) is also heterogeneous: nanoplates of 23 nm long, spheres of 23 nm with inappreciable core.

³ The most concentrated sample (17.6 mg/mL) is heterogeneous, containing: spheres of 5 and 26 nm with inappreciable core and irregular particles of 17 nm with dark contrast. The next sample (8.8 mg/mL) is also heterogeneous: cubes of 12 nm, spheres of 5 and 26 nm with inappreciable core. The sample 4.4 mg/mL is still heterogeneous with spheres of 29 nm with 2 cores and spheres of 5 nm with inappreciable core.

Figure S4. TEM images of CsPbX3@SiO2 NPs where it is appreciated the coexistence of coreshell and empty silica NPs.

Table S2. Estimation of the ratio of core-shell to empty SiO_2 nanoparticles for each composition calculated from three TEM images.

	% core-shell	% empty SiO2	Total particles (counts)
CsPb(Cl _x Br _{3-x})@SiO ₂	29,1	70,9	693
CsPbBr ₃ @SiO ₂	78,2	21,8	234
CsPbl ₃ @SiO ₂	6,8	93,2	770

Figure S4. Elemental analysis of $CsPb(Cl_xBr_{3-x}) @SiO_2$ and $CsPbBr_3@SiO_2$ showing the atomic distribution of Si, O, Cl, Br, and Pb obtained by EDS TEM.

Polar solvent stability								
Water-triggered Cs_4PbBr_6 to $CsPbBr_3$ phase transition								
	Structural stability	Water or polar solvent						
CsPb(Cl _x Br _{3-x})@SiO ₂	4 days (R.H~60%)	3 days in water solution*	This work					
CsPbBr₃@SiO₂	4 days	4 days in water solution*						
CsPbl₃@SiO₂	Not stable							
CsPbBr₃@SiO₂	N.R.**	90 days water/ethanol solution	1					
CsPbBr ₃ @SiO ₂	N.R.	27 days ethanol	2					
Ligand-assisted reprecipitation								
CsPbBr ₃ @SiO ₂	4 weeks (R.H~75%)	40 min in water	3					
Hot injection								
CsPbBr₃@SiO₂	30 days (R.H~40%)	8 days in hexane/water	4					

Table S2. Summary of polar solvent stability of different silica-coated metal halide perovskite core-shell NPs.

*Thermal-treated NPs.

**Not reported

- 1 M. Li, X. Zhang and P. Yang, *Nanoscale*, 2021, **13**, 3860–3867.
- 2 C. Rossi, R. Scarfiello, R. Brescia, L. Goldoni, G. Caputo, L. Carbone, D. Colombara, L. De Trizio, L. Manna and D. Baranov, *Chem. Mater.*, 2022, **34**, 405–413.
- 3 Q. Zhong, M. Cao, H. Hu, D. Yang, M. Chen, P. Li, L. Wu and Q. Zhang, *ACS Nano*, 2018, **12**, 8579–8587.
- 4 F. Gao, W. Yang, X. Liu, Y. Li, W. Liu, H. Xu and Y. Liu, *Chem. Eng. J.*, 2021, **407**, 128001.