Supporting Information

Large-Scale Synthesis, Mechanism, and Application of a

Luminescent Copper Hydride Nanocluster

Tingting Xu,^{‡a} Endong Wang,^{‡c} Shuai Liu,^a Zhezhen Wei,^a Peiqun Yin,^d Jianan Sun,^d Wen Wu Xu^{b*} and Yongbo Song^{a,d*}

^aSchool of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.

^bDepartment of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.

°School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.

^dSchool of Biomedical Engineering, Anhui Medical University, Hefei, Anhui 230032, China.

Corresponding authors: xuwenwu@nbu.edu.cn; ybsong860@ahmu.edu.cn;

Large-scale synthesis of Cu₄H NCs.

The large-scale synthesis of the Cu₄H NCs was gradually amplified by 10-fold, 20-fold and 30-fold. Herein, the 30-fold synthesis method is discussed. 6 g disphenyl-2-pyrldylphosphine was added into 180 mL methanol solution of cuprous chloride (1.5g) with vigorously stirring (~1200 rpm) at room temperature. After string for 30 min, 3.6 g borane-tert-butylamine complex was added in the above solution. After 5 h, 10 mL methanol solution of sodium tetraphenylboron (0.15 g) was mixed with the reaction solution, which was centrifuged. And then, the yellowish precipitate was retained and washed with n-hexane/ethanol three times to remove the redundant ligands and by-products. Finally, ~5.86 g of pure Cu₄H NCs was obtained with a ~90% yield (Cu atom basis).

Fig. S1 The pictures of the production of 30-fold synthesis.

Fig. S2 Photographs of the reaction system using NaBH₄ at different times.

Fig. S3 Total structure of Cu₄H NC with the counterion of Ph₄B⁻. Color labels: blue = Cu; green = Cl; magenta = P; light blue = N; grey = C; purple = B; white = H.

Fig. S4 The ¹H NMR spectrum of Cu₄H NCs dissolved in CD₂Cl₂ (note: the peak at 1.48 ppm can be assigned to protons from H₂O).

Fig. S5 The PXRD spectra of the Cu₄H NCs prepared in large-scale.

Fig. S6 Localized molecular orbital that reflects the valence electron population.

Fig. S7 (a) the Cu 2p XPS and (b) Auger Cu LMM spectra of Cu₄H NCs.

Fig. S8 The UV-vis absorption spectrum of Cu₄H NCs in solid state.

Fig. S9 Time-dependent UV-vis absorption spectra of Cu₄H NCs in dichloromethane.

Fig. S10 The UV-vis spectra of Cu_4H NCs in the N₂-protected and O₂-protected CH_2Cl_2 solution.

Fig. S11 Emission lifetime of Cu₄H NCs in the CH₂Cl₂ at air atmosphere.

Fig. S12 The normalized emission spectra of Cu₄H NC in CH₂Cl₂ solution under O₂, air and N₂ atmospheres (left) and the corresponding magnified spectra (right).

Fig. S13 Photographs of the reaction process of Cu_4H NCs with Ag^+ ions.

Fig. S14 (a) the PXRD spectrum of the precipitation; (b) the Cu 2p XPS spectrum of supernatant.

Table S1 Crystal data and structure refinement for Cu₄H.					
Empirical formula	$C_{92}H_{77}BCl_2Cu_4N_4P_4$				
Formula weight	1698.31				
Temperature/K	120(2)				
Crystal system	monoclinic				
Space group	$P2_1/c$				
a/Å	16.0437(3)				
b/Å	30.6258(7)				
c/Å	18.2015(4)				
$\alpha^{\prime \circ}$	90				
β/°	97.903(2)				
$\gamma^{\prime \circ}$	90				
Volume/Å ³	8858.4(3)				
Z	4				
$\rho_{calc}g/cm^3$	1.273				
μ/mm^{-1}	2.661				
F(000)	3484.0				
Crystal size/mm ³	0.1 imes 0.08 imes 0.06				
Radiation	$CuK\alpha \ (\lambda = 1.54186)$				
2Θ range for data collection/°	8.418 to 124.988				
Index ranges	-16 \leq h \leq 18, -26 \leq k \leq 35, -17 \leq l \leq 20				
Reflections collected	34146				
Independent reflections	13781 [$R_{int} = 0.0399, R_{sigma} = 0.0517$]				
Data/restraints/parameters	13781/1080/968				
Goodness-of-fit on F ²	0.799				
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0460, wR_2 = 0.1272$				
Final R indexes [all data]	$R_1 = 0.0601, wR_2 = 0.1364$				
Largest diff. peak/hole / e Å ⁻³	0.74/-0.56				

Table S2 Orbital populations for the HOMO and LUMO orbital of the S_0 state and S_1 state of the Cu₄H cluster calculated at the B3LYP/LANL2DZ level.

S ₀ state of the Cu ₄ H cluster							
	Cu_sp	Cu_d	Cl_sp	P_sp	N_sp	C_sp	Others
НОМО	7.28%	48.53%	13.36%	12.99%	0.12%	9.01%	8.59%
LUMO	11.36%	0.30%	0.18%	4.70%	20.87%	61.53%	0.51%
S1 state of the Cu4H cluster							
	Cu_sp	Cu_d	Cl_sp	P_sp	N_sp	C_sp	others
номо	7.57%	45.85%	14.27%	13.61%	0.74%	8.71%	9.13%
LUMO	4.78%	1.20%	0.30%	5.54%	20.86%	65.93%	0.68%

ıls.

Electric pair symbol	Electrode process	$E^{\theta}(V)$
Zn ²⁺ /Zn	$Zn^{2+}+2e^{-}=Zn$	-0.7626
Ni ²⁺ /Ni	Ni ²⁺ +2e ⁻ =Ni	-0.257
Na ⁺ /Na	Na ⁺ +e ⁻ =Na	-2.714
Mn ²⁺ /Mn	$Mn^{2+}+2e^{-}=Mn$	-1.18
Ag ⁺ /Ag	Ag++e==Ag	0.7991
Mg ²⁺ /Mg	Mg ²⁺ +2e ⁻ =Mg	-2.356
Fe ³⁺ /Fe	$Fe^{3+}+3e^{-}=Fe$	-0.037
Fe ²⁺ /Fe	$Fe^{2+}+2e^{-}=Fe$	-0.44
Fe^{3+}/Fe^{2+}	$Fe^{3+}+e^{-}=Fe^{2+}$	0.771
Co ²⁺ /Co	Co ²⁺ +2e ⁻ =Co	-0.277
Ca ²⁺ /Ca	Ca ²⁺ +2e ⁻ =Ca	-2.868
Cu ²⁺ /Cu ⁺	$Cu^{2+}+e^{-}=Cu^{+}$	0.159