Copper(II) complexes of a furan-containing aroylhydrazonic ligand: syntheses, structural studies, solution chemistry and interaction with HSA

Fagner da Silva Moura, Ygor S. Sobrinho, Carolina Stellet, Jilder D. P. Serna, Carolina B. P. Ligiero, Maurício I. Yoguim, Daphne S. Cukierman, Renata Diniz, Odivaldo C. Alves, Nelson H. Morgon, Aguinaldo R. de Souza, Nicolás A. Rey*

*nicoarey@puc-rio.br

Supplementary Information

Figure S1. Experimental and calculated (vertical orange lines) isotope distribution pattern of the ESI-MS(+) peak related to the species [Cu(**HL**)DMF]⁺.

Figure S2. Experimental and calculated (vertical orange lines) isotope distribution pattern of the ESI-MS(+) peak related to the species $[H_2L+H]^+$.

Figure S3. Experimental and calculated (vertical orange lines) isotope distribution pattern of the ESI-MS(+) peak related to the species [2H₂L+Na]⁺.

Figure S4. Experimental and calculated (vertical orange lines) isotope distribution pattern of the ESI-MS(+) peak related to the species $[Cu(HL)_2+H]^+$.

Figure S5. Fo-Fc map on the $bis(\mu$ -phenoxo)dicopper(II) motif plane of complex 2.

Crystal	H ₂ L	Complex 1	Complex 2	
Chemical formula	$C_{13}H_{14}O_4N_2$	$C_{13}H_{13}O_4N_2ClCu$	$C_{32}H_{36}O_8N_4Cu_2$	
$Mr (g mol^{-1})$	262.26	360.24	731.73	
Crystal system, space group	Orthorhombic, $P2_1 2_1 2_1$	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$	
Temperature (K)	296	293	296	
a, b, c (Å)	4.9316(2), 12.4514(5),	12.6740(4), 6.9206(2),	6.2379(5), 14.5843(10),	
β (°)	_	91.109(3)	94.394(2)	
$V(Å^3)$	1273.49(9)	1416.74(7)	1595.39(2)	
Z	4	4	2	
Radiation type	Μο <i>Κ</i> α	Μο <i>Κ</i> α	Μο <i>Κ</i> α	
$\mu (mm^{-1})$	0.103	1.746	1.390	
Crystal size (mm)	0.72 imes 0.14 imes 0.12	0.20 imes 0.05 imes 0.04	0.07 imes 0.08 imes 0.35	
Data collection				
Diffractometer	Bruker D8 Venture	Rigaku-Oxford-Diffraction	Bruker D8 Venture	
Measured/Independent/Observed	22889, 2577, 2224	31799, 4009, 2953	25923, 3029, 2193	
$R_{\rm int}$	0.043	0.048	0.079	
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.126, 1.09	0.035, 0.088, 1.04	0.052, 0.175, 1.21	
No. of parameters	231	194	213	
No. of restraints	238 (disorder in the furan ring)	0	0	
Δρmax, Δρmin (e Å ⁻³)	0.147, -0.150	0.414, -0.260	0.750, -0.640	

Table S1. Experimental crystallographic details for H₂L and its complexes 1 and 2.

XRD / Å	Calculated / Å
1.351(3)	1.342
1.237(3)	1.209
1.287(3)	1.284
1.379(3)	1.355
1.343(3)	1.388
1.443(3)	1.448
	XRD / Å 1.351(3) 1.237(3) 1.287(3) 1.379(3) 1.343(3) 1.443(3)

Table S2. Selected bond distances for H2L. DFT data [level of theory B3LYP/6-311++G(2d,p)]of the optimized structure in the gas phase were included for comparison.

Table S3. Selected bond angles for H₂L. DFT data [level of theory B3LYP/6-311++G(2d,p)] of the optimized structure in the gas phase were included for comparison.

Angle	XRD / °	Calculated / °
C2C1O1	118.4(2)	118.1
C1C6C7	123.6(2)	121.8
C6C7N1	122.9(2)	121.7
C7-N1-N2	114.4(2)	119.0
N1-N2-C8	120.1(2)	119.8
N2-C8-C9	114.4(10)	112.8
N2C8O2	123.7(2)	123.6
C8–C9–O3	116.0(17)	115.9
C9–O3–C12	108.5(12)	107.1

Figure S7. Overlapping of the mid-infrared spectra of H_2L and complex 1 in KBr, at room temperature, (A) from 4000 to 400 cm⁻¹ and (B) expansion of the fingerprint region from 1750 to 400 cm⁻¹.

Figure S8. Overlapping of the mid-infrared spectra of H_2L and complex 2 in KBr, at room temperature, (A) from 4000 to 400 cm⁻¹ and (B) expansion of the fingerprint region from 1750 to 400 cm⁻¹.

Figure S9. Mid-infrared spectra of H₂L. (A) Calculated (black) [gas phase, level of theory B3LYP/6-311++G(2d,p)] and experimental (blue) (KBr pellets at room temperature). (B) Plot of experimental versus calculated frequencies.

Figure S10. Mid-infrared spectra of complex **1**. (**A**) Calculated (black) [gas phase, level of theory B3LYP/6-311++G(2d,p)] and experimental (blue) (KBr pellets at room temperature). (**B**) Plot of experimental *versus* calculated frequencies.

Figure S11. Mid-infrared spectra of complex **2**. (**A**) Calculated (black) [gas phase, level of theory B3LYP/6-311++G(2d,p)] and experimental (blue) (KBr pellets at room temperature). (**B**) Plot of experimental *versus* calculated frequencies. For the sake of simplicity, calculations involving complex **2** were performed disregarding the axial ligands.

Experimental (cm ⁻¹)	Calculated (cm ⁻¹)	Assignment	
3225	3519	v(N–H)hydrazone	
3202	3425	v(O–H)phenol	
3152	3154	v(C–H)phenol	
3136	3142	v(C–H)phenol	
3098	_	ν(C–H)	
3017	3028	v(C–H)azomethine	
3002	_	ν(C–H)	
2940	3094	v _{as} (C–H)methyl	
2914	3065	v _{as} (C–H)methyl	
2861	3020	v _{sym} (C–H)methyl	
1653**	1771	ν (C=O) + δ (N–N–H) hydrazone	
1628**	1668	v(C=N)hydrazone + $v(C=C)$ phenol ring	
1600**	1599	$v_{as}(C=C)$ furan ring	
1495*	1548	δ(C–N–H)hydrazone	
1465*	1464	δ (C–O–H)phenol + δ (N–N–H)hydrazone	
1381	1379	$\delta(OC-N-H) + \delta(H-C=N)$ hydrazone	
1364*	1350	$v(C=C)$ phenol ring + $\delta(H-C=N)$ hydrazone	
1326*	—	v(C–O)phenol	
1313*	1316	$\delta(C=C-H)$ phenol + $\delta(H-C=N)$ hydrazone	
1274*	1286	$v(C-O)$ furan + $\delta(OC-N-H)$ hydrazone	
1240	1237	$\delta(C-O-H) + \delta(C=C-H)$ phenol	
1199*	1204	δ (C=C-H)furan + δ (N-N-H)hydrazone	
1164	1169	$v(N-N) + \delta(O-C-H)$ furan	
1142	1158	δ(C=C-H)phenol	
1084	1083	Furan breathing mode + δ (OC–N–H)hydrazone	
1068	1067	δ(CH ₃)	
1031	1041	δ(C=C–H)furan	
1015	1026	δ(CH ₃)	
963	967	$\delta_{out-of-plane}(C-H)$ phenol + $\delta_{out-of-plane}(C-H)$ azomethine	
885	876	δ (C=C-O)furan + δ (O=C-N)hydrazone	
854	845	$\delta_{out-of-plane}(C-H)phenol + \delta(CH_3)$	
828	829	δ _{out-of-plane} (C–H)furan	
776	764	$\delta_{out-of-plane}(C-H)$ furan + $\delta_{out-of-plane}(O-H)$ phenol	
759**	761	$\delta_{out-of-plane}(O-H)$ phenol + $\delta_{out-of-plane}(C-H)$ furan	
743*	748	$\delta_{out-of-plane}(O-H) + \delta_{out-of-plane}(C-H) phenol$	
613	614	$\delta_{out-of-plane}(C-H)$ furan	
592	580	$\delta_{\text{out-of-plane}}(C-H) \text{ phenol} + \delta(CH_3)$	
474	472	$\delta_{out-of-plane}$ (N–H)hydrazone + δ (C=C–O)phenol	
457	463	δ(C=C–C)phenol	
deale 1 de 1		•	

Table S4. Experimental and calculated [gas phase, level of theory B3LYP/6-311++G(2d,p)] mid-IR datafor the main absorptions related to the hydrazonic ligand H_2L , along with proposed assignments.

** and * are the most intense bands

Experimental (cm ⁻¹)	Calculated (cm ⁻¹)	Assignment	
3514*	3574	v(N–H)hydrazone	
3203	3238	v _{as} (C–H)furan	
3141	3148	v _{as} (C–H)phenol	
3124	3134	v(C–H)phenol	
3052	3072	v(C–H)azomethine	
3008	-	ν(С–Н)	
2922	3094	v _{as} (C–H)methyl	
2868	3060	v _{as} (C–H)methyl	
2840	3017	v _{sym} (C–H)methyl	
1622**	1666	v(C=O) + v(C=N) hydrazone	
1604**	1641	v(C=N) hydrazone + $v(C=O)$	
1570**	1562	δ(C–N–H)hydrazone	
1538**	1549	v(C=C)phenol ring	
1530	1505	$\delta_{as}(CH_3)$	
1470	1483	v _{sym} (C=C)furan ring	
1455**	1447	δ (C=C-C)phenol + δ (C=C-H)furan	
1419	1419	δ _{sym} (CH ₃)	
1394	1382	$\delta(H-C=N)$ hydrazone + $\delta(C=C-H)$ phenol	
1373	1366	δ (C=C-H) + v(C-O) phenol + δ (H-C=N)hydrazone	
1329*	1317	$\delta(OC-N-H) + \delta(H-C=N)$ hydrazone	
1300*	1271	δ(C=C-H)phenol	
1245	1231	δ (H–C=N) hydrazone + v(C=C)phenol	
1200*	1211	δ (C–N–H)hydrazone + δ (O–C–H)furan	
1177	1159	δ (C=C-H)furan + δ (OC-N-H) + δ (C=C-H)phenol	
1138	1108	v(N–N)	
1080	1068	δ(CH ₃)	
1027	1032	δ(CH ₃)	
967	980	$\delta(O-C-H)$ furan + $\delta(CH_3)$ + $\delta(C=C-H)$ phenol	
942	957	δ _{out-of-plane} (C–H)azomethine	
885	888	$\delta(C=C-O)$ furan + $\delta(O=C-N)$ hydrazone	
833*	845	$\delta_{out-of-plane}(C-H)$ phenol + $\delta(CH_3)$	
809	821	$\delta(C=C-C)phenol + v(C-CH_3)$	
782	788	Phenol breathing mode	
770*	771	$\delta_{\text{out-of-plane}}(C-H)$ furan	
734	738	$\frac{\delta_{\text{out-of-plane}}(C=O) + \delta_{\text{out-of-plane}}(C=C-H) \text{ furan}}{\delta_{\text{out-of-plane}}(C=C-H) \text{ furan}}$	
682	686	$\delta(C=C-C)$ phenol	
611	610	δ _{out-of-plane} (C=C-H)furan	
593	588	$\mathbf{v}(\mathbf{C}\mathbf{u}-\mathbf{N}) + \delta(\mathbf{C}=\mathbf{C}-\mathbf{O})\mathbf{n}\mathbf{h}\mathbf{e}\mathbf{n}\mathbf{o}\mathbf{l}$	
559	553	$\delta(OC-N-N)$ hydrazone	
533	527	$\mathbf{v}(\mathbf{Cu}-\mathbf{O2}) + \mathbf{v}(\mathbf{Cu}-\mathbf{O1})$	
481	483	$\frac{\delta(C=C-C)}{\delta(C=C-C)}$	
473	466	δ(Ο-C υ-N)	
СТ	100	v(v-cu-n)	

Table S5. Experimental and calculated [gas phase, level of theory B3LYP/6-311++G(2d,p)] mid-IR data for the main absorptions related to the mononuclear copper complex 1, along with proposed assignments.

** and * are the most intense bands

Experimental (cm ⁻¹)	Calculated (cm ⁻¹)	Assignment	
3133	3153	v _{as} (C–H)phenol	
3108	3117	v(C–H)azomethine	
3076	-	ν(C–H)	
2984	3097	v _{as} (C–H)methyl	
2916	3068	v _{as} (C–H)methyl	
2857	3022	v _{sym} (C–H)methyl	
1623*	1665	v(C=N)hydrazone	
1615	1616	v _{as} (C=C)furan ring	
1586	1585	v _{as} (C=C)phenol ring	
1552	1537	ν (OC-N) + ν (C=C)furan + δ (C=C-H)phenol	
1518*	1518	δ(C=C-H)phenol	
1513**	1504	$\delta(CH_3) + \delta(C=C-H)$ furan + v(C=O)hydrazone	
1486**	1488	$\delta_{as}(CH_3)$	
1401*	1392	δ (H–C=N)hydrazone + δ (C=C–H)phenol	
1366*	1374	δ (H–C=N)hydrazone + δ (C=C–H)furan	
1280	1270	δ (H–C=N)hydrazone + δ (C=C–H)phenol	
1252	1252	δ(C=C-H)furan	
1228*	1231	$v(C-O)$ phenol + $\delta(C=C-H)$ phenol	
1193*	1216	$\delta(O-C-H)$ furan + $\delta(C=C-H)$ phenol	
1137	1162	δ(O–C–H)furan	
1107	1112	δ(C=C-H)furan	
1065	1068	$v(N-N) + \delta(C=C-H)$ furan	
1011	1026	δ(CH ₃)	
878	894	$\delta(O=C-N)$ hydrazone + $\delta(C=C-H)$ furan	
826	823	$\delta_{out-of-plane}(C-H)$ phenol + $\delta_{out-of-plane}(C-H)$ furan	
798	797	Phenol breathing mode	
763*	757	δ _{out-of-plane} (C–H)furan	
629	637	δ _{out-of-plane} (C–O–C)furan	
594	582	v(Cu–O2)	
549	552	$\delta(OC-N-N)$ hydrazone + $\delta(C-C=N)$ azomethine	
507	501	Phenol deformation mode	
477	471	Bending of coordinated hydrazones	

Table S6. Experimental and calculated [gas phase, level of theory B3LYP/6-311++G(2d,p)] mid-IR data for the main absorptions related to the dinuclear copper complex **2**, along with proposed assignments.

** and * are the most intense bands

In the region below 1620 cm⁻¹, the correlation between theory and experiment was remarkable for the three compounds, with a plot of experimental *versus* calculated frequencies giving straight lines of slopes 1.012 (H_2L), 0.990 (1) and 0.999 (2). The R² value for all of them was 0.999. In this spectral window, from 1620 to 400 cm⁻¹, the only computational failure observed was related to the phenol C–O stretching mode in H_2L , which could not be identified amongst the calculated vibrations. The program also failed in predicting accurately the methyl group stretching frequencies, systematically overestimating them. For H_2L and 1, something similar happened with the v(N–H) and v(C=O) vibrations, while this is probably associated to the involvement of these groups in intermolecular H bonding with structural water molecules in the crystal, as evidenced by the XRD analysis. It is worth noting that intermolecular interactions were not considered during the DFT calculations. Specifically in the case of the ligand, phenol v(O–H) and azomethine v(C=N) modes were also miscalculated since they are involved in an intramolecular H bond. A similar fact was observed with the v(C=N) vibration in complex **2**, overestimated by around 40 cm⁻¹.

Complex 1		Complex 2	
λ (nm)	ε (L mol ⁻¹ cm ⁻¹)	λ (nm)	ε (L mol ⁻¹ cm ⁻¹)
306	$15,000 \pm 200$	308	$27,700 \pm 700$
320	$16{,}850\pm150$	320	$33,\!450 \pm 820$
336	$16,\!450 \pm 150$	336	$32,150 \pm 750$
406	$14,950 \pm 200$	404	$30,900 \pm 650$
678	86 ± 1	630	190 ± 4

Table S7. Main bands in the UV-Vis spectra of complexes 1 and 2, along with their molar absorptivities.

Figure S12. (A) UV-Vis spectra of ligand H₂L (2.0 × 10⁻⁵ mol L⁻¹) in 1% MeOH / PBS, pH 7.4 (black solid curve) and in DMF (red dotted curve), at r.t. Position of the HOMO-LUMO calculated transition is given as a dashed blue line (B) Frontier orbitals that take part in the process.

Figure S13. (A) UV-Vis titration of a 2×10^{-5} mol L⁻¹ solution of 2 (2% MeOH / PBS, pH 7.4) with HSA at 25 °C. *Inset*: absorbance at 430 nm as a function of HSA equivalents. (B) Molecular docking results with indication of pose and most probable interactions of the neutral, dimeric complex 2 at the DS3 site.