Supplementary Information

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Solvothermal Synthesis of VO₂ Nanoparticles with Locally Patched V₂O₅ Surface Layer and their Morphology-Dependent Catalytic Properties for the Oxidation of Alcohols

Dorothea Gömpel,^a Muhammad Nawaz Tahir,^{*b,c} Mujeeb Khan,^d Syed Farooq Adil,^d Mohammed Rafi Shaik,^d Mufsir Kuniyil,^d Abdulrahman Al-Warthan,^d and Wolfgang Tremel^{*a}

Figure S1. Transmission electron microscopy images showing the influence of amount of surfactant F-127 on the morphology of VO_x nanourchins synthesized without F-127, (a) and 150 mg of F-127(b)

- ^{a.} Chemistry Department, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany. E-mail: tremel@uni-mainz.de.
- b. Chemistry Department, King Fahd University of Petroleum & Minerals, Dharan 31261, Kingdom of Saudi Arabia. E-mail: muhammad.tahir@kfupm.edu.sa
- ^c Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and & Minerals, Dhahran 31261, Saudi Arabia
- ^{d.} Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia.

⁺ Footnotes relating to the title and/or authors should appear here. Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Analysis of Oxidation Catalysis

To determine the product selectivity, the liquid products were analysed by gas chromatography, Agilent 7890A (Agilent Technologies Inc., Santa Clara, CA, USA) equipped with a flame ionization detector (FID), split injection (1:100) and a 19019S001 HP-PONA column. Helium was used as the carrier gas. For benzyl alcohol oxidation the inlet and detector were kept at temperature of 210 °C and 250 °C, respectively. The oven was started at 50 °C and hold for a minute later increased up to 160 °C with a ramp rate of 5 °C/min. On the other hand, for furfuryl alcohol oxidation the inlet and detector were kept at temperature of 190 °C and 250 °C, respectively. The oven was started at 80 °C and hold for 2 minute later increased up to 170 °C with a temperature ramp rate of 10 °C/min.

Figure S2. GC chromatogram of benzyl alcohol oxidation using VO₂ nano-urchins.

Figure S3. GC chromatogram of furfuryl alcohol oxidation using VO₂ nano-urchins.

Journal Name

Figure S4. X-ray diffractogram of re-used VO₂ nano-urchin catalyst.

Figure S5. Proposed reaction mechanism for the oxidation of alcohols on VO_2 surfaces

Table S1. Comparison of the catalytic activity of the catalysts for the oxidation of alcohols.

Catalyst	Temperature (°C)	Time (hrs)	Conversion	Reference
V ₂ O ₅	rt	36	74	81
V ₂ O ₅	82	5	30	82
V ₂ O ₅ @TiO ₂	50	1	35	83
V ₂ O ₅ @GO	80	2	32	84
V_2O_5 @SrTiO ₃	80	6	94	85
$V_2O_5@C_3N_4$	rt	42	64	86
VO ₂ /nano-urchin	150	4	100	Our catalyst