Influence of framework disordering on luminescence performance in Cr³⁺-doped near-infrared phosphor: a case

study of A₃B₆O₁₄-type hosts

Jiahao Feng,^a Shaojian Xu,^a Ruijing Fu,^a Yue Guo,^a Qingguang Zeng,^a Dawei Wen,^{*a} a. School of Applied Physics and Materials, Wuyi University, Jiangmen, 529020, PR China. E-mail: ontaii@163.com

Synthesis, characterization and calculation

The $Ca_{3-x}Na_xGa_{2-x}Ge_{4+x}O_{14}:Cr^{3+}$ phosphors were synthesized by solid-state method. Stoichiometric raw materials of Na₂CO₃, CaCO₃, Ga₂O₃, GeO₂ and Cr₂O₃ were mixed and ground in a mortar for 30 min. The mixtures were transferred to a furnace and heated for 4 h at 1100-1400 °C under an air atmosphere. The sintered materials were ground into powder for further characterization.

The detailed stoichiometries of $Ca_{3-x}Na_xGa_{2-x}Ge_{4+x}O_{14}$ and $Ca_{3-x}Na_xGa_{2-x}Ge_{4+x}O_{14}$: $_xGe_{4+x}O_{14}$: Cr^{3+} are below.

For $Ca_{3-x}Na_xGa_{2-x}Ge_{4+x}O_{14}$: $Ca_3Ga_2Ge_4O_{14} (x = 0)$ $NaCa_2GaGe_5O_{14} (x = 1)$ $Na_2CaGe_6O_{14} (x = 2)$

For $Ca_{3-x}Na_xGa_{2-x}Ge_{4+x}O_{14}:Cr^{3+}:$ $Ca_3Ga_{1.94}Cr_{0.06}Ge_4O_{14} (x = 0)$ $NaCa_2Ga_{0.94}Cr_{0.06}Ge_5O_{14} (x = 1)$ $Na_{1.94}Ca_{1.06}Cr_{0.06}Ge_{5.94}O_{14} (x = 2)$

XRD were measured using a X'Pert powder diffractometer with Cu- $K\alpha$ radiation. The Rietveld refinement was performed by the Z-Code software V1.1.3.^{S1, 2} The PL, PL excitation (PLE) and temperature-dependent PL spectra were taken on an Edinburgh FLS980 fluorescence spectrophotometer with a 450W xenon lamp. QY of the phosphors were measured on a Hamamatsu UV-VIS absolute PL quantum yield spectrometer C13534 using 450 nm excitation. The diffuse reflectance spectra were taken on a Shimadzu UV-3600 plus UV-Visible-NIR spectrophotometer with white BaSO4 powder as the standard reference.

DFT calculations were performed using the Vienna ab-initio Simulation Package (VASP) V6.2 and WIEN2K V21.1.^{S3, 4} In total energies and structural optimization calculations, the exchange-correlation was described by revised Perdew-Burke-Ernzerhof functional for solid (PBEsol).^{S5} The cut-off energy and convergence criterion were set to 500 eV and 10⁻⁸ eV, respectively. The band structures and density of states were calculated using the modified Becke-Johnson (MBJ) potential method based on the optimized models by WIEN2K.^{S6,}

⁷ The Debye temperature Θ_D was calculated based on the harmonic Debye model, relying on the bulk modulus and shears modulus:⁸

$$\Theta_D = \frac{h}{k_B} \left[\frac{3n}{4\pi} \times \frac{N_A \rho}{M} \right]^{1/3} \nu_m$$
(Eq. S1)

Where *h* is the Planck constant, k_B is the Boltzmann constant, *n* is the number of atoms in the formula, N_A is the Avogadro constant, ρ is density of the material,

M is the molecular mass corresponding to *n* and ν_m is calculated by the equations below:

$$\nu_{m} = \left[\frac{1}{3}\left(\frac{2}{\nu_{s}^{3}} + \frac{1}{\nu_{l}^{3}}\right)\right]^{-1/3} \text{(Eq. S2)}$$
$$\nu_{s} = \left(\frac{G_{H}}{\rho}\right)^{1/2} \text{(Eq. S3)}$$
$$\nu_{l} = \left(\frac{B_{H} + \frac{4}{3}G_{H}}{\rho}\right)^{1/2} \text{(Eq. S4)}$$

Where B_H and G_H are bulk and shears modulus, respectively.

Figure S1. Rietveld refinement results of (a) $Ca_3Ga_{1.94}Cr_{0.06}Ge_4O_{14}$, (b) $NaCa_2Ga_{0.94}Cr_{0.06}Ge_5O_{14}$ and $Na_2CaGe_{5.94}Cr_{0.06}O_{14}$.

Figure S2. Crystal structure of $A_3B_6O_{14}$ -type material showing (a) A cations and (b) B cations coordinated by O²⁻.

Figure S3. Arrhenius fitting of (a) $Ca_3Ga_2Ge_4O_{14}:Cr^{3+}$, (b) $NaCa_2GaGe_5O_{14}:Cr^{3+}$ and (c) $Na_2CaGe_5O_{14}:Cr^{3+}$.

The activation energy ΔE can be obtained by fitting the Arrhenius formula:⁹

$$I(T) = \frac{I_0}{1 + c \times e^{\left(-\frac{\Delta E}{kT}\right)}}$$
(Eq. S5)

Where I_0 and I(T) are the integral emission intensity at room temperature and testing temperature (25~200 °C), respectively. *k* is the Boltzmann constant (8.617×10⁻⁵ eV/K) and *c* is the fitting constant. The Eq. S1 was revised as:

$$ln\left[\frac{I_0}{I(T)} - 1\right] = lnc - \frac{\Delta E}{kT}$$
 (Eq. S6)

By linear fitting of $lnc - \frac{\Delta E}{kT}$ and $ln\left[\frac{I_0}{I(T)} - 1\right]$, the slope $(-\Delta E)$ can be obtained.

Figure S4. Raman spectra of $Ca_3Ga_2Ge_4O_{14}$, $NaCa_2GaGe_5O_{14}$ and $Na_2CaGe_5O_{14}$ hosts.

Figure S5. (a) Reflectance spectra of $Ca_3Ga_2Ge_4O_{14}$, $NaCa_2GaGe_5O_{14}$ and $Na_2CaGe_6O_{14}$, absorption spectra of (b) $Ca_3Ga_2Ge_4O_{14}$, (c) $NaCa_2GaGe_5O_{14}$, (d) $Na_2CaGe_6O_{14}$.

The absorption spectrum was calculated using the reflectance spectrum by the Kubelka–Munk function:

$$F(R) = \frac{(1-R)^2}{2R}$$
 (Eq. S7)
[$F(R)hv$] ^{$\frac{1}{n}$} = $C_2(hv - E_g)$ (Eq. S8)

where R is the reflectance (%), hv is the photonic energy, n is 1/2 for direct bandgap and 2 for indirect bandgap materials, C_2 is the absorption constant and E_g is the bandgap value.^{S10-12} In our case, n is 1/2 based on the band structure calculation (Figure S4). The tangent fitting of the linear part was performed to obtain the E_g (intercept).

Figure S6. Bandgap values of $Ca_3Ga_2Ge_4O_{14}$, $NaCa_2GaGe_5O_{14}$ and $Na_2CaGe_6O_{14}$, by experimental method, PBE and MBJ calculation.

Figure S7. Band structures of Ca₃Ga₂Ge₄O₁₄, NaCa₂GaGe₅O₁₄ and Na₂CaGe₆O₁₄.

Figure S8. Density of state of (a) $Ca_3Ga_2Ge_4O_{14}$ and the corresponding elements of (b) Ca, (c) Ga, (d) Ge, (e) O.

Figure S9. Density of state of (a) $NaCa_2GaGe_5O_{14}$ and the corresponding elements of (b) Na, (c) Ca, (d) Ga, (e) Ge, (f) O.

Figure S10. Density of state of (a) $Na_2CaGe_6O_{14}$ and the corresponding elements of (b) Na, (c) Ca, (d) Ge, (e) O.

Space	Group:						
P321 (NO. 150)		<i>a</i> = <i>b</i> = 8.068249(9) Å		<i>c</i> = 4.966600(10) Å		$V = 279.99 \text{ Å}^3$	
		Wyckoff					
Site	Atom	Position	Occupancy	x	у	Z	B (Å ²)
А	Ca	3e	1	0.57986(15)	0	0	0.81(2)
B1	Ga/Ge	1 <i>a</i>	0.3333/0.6667	0	0	0	0.606(19)
B2	Ga/Ge	3 <i>f</i>	0.5/0.5	0.23714(6)	0	0.5	0.692(15)
В3	Ga/Ge	2d	0.0833/0.9167	0.333333	0.666667	0.5298(2)	0.489(15)
01	0	2d	1	0.333333	0.666667	0.1811(8)	0.64(6)
02	0	6g	1	0.4596(6)	0.1485(6)	0.3134(6)	1.52(6)
03	0	6g	1	0.1438(5)	0.2190(5)	0.2433(7)	1.24(6)

Table S1. Structural parameters of $Ca_3Ga_{1.94}Cr_{0.06}Ge_4O_{14}$.

Due to the low concentration of Cr^{3+} , the related parameters were not refined.

Space	Group:						
P321 (NO. 150)		a = b = 8.109819(11) Å		<i>c</i> = 4.919419(11) Å		$V = 280.20 \text{ Å}^3$	
		Wyckoff					
Site	Atom	Position	Occupancy	x	у	Z	B (Å ²)
А	Na/Ca	3 <i>e</i>	0.3333/0.6667	0.58107(15)	0	0	0.95(3)
B1	Ge	1 <i>a</i>	1	0	0	0	1.01(2)
B2	Ga/Ge	3f	0.3333/0.6667	0.24143(6)	0	0.5	0.687(17)
В3	Ge	2d	1	0.333333	0.666667	0.52553(18)	0.482(16)
O1	0	2d	1	0.333333	0.666667	0.1826(6)	0.36(6)
02	Ο	6g	1	0.4609(4)	0.1452(4)	0.3215(4)	0.48(5)
O3	0	6g	1	0.1467(4)	0.2200(4)	0.2278(6)	1.17(6)

Table S2. Structural parameters of $NaCa_2Ga_{0.94}Cr_{0.06}Ge_5O_{14}$.

Due to the low concentration of Cr^{3+} , the related parameters were not refined.

Space Group:							
P321 (NO. 150)		a = b = 8.17478(3) Å		c = 4.83834(2) Å		$V = 280.01 \text{ Å}^3$	
		Wyckoff					
Site	Atom	Position	Occupancy	x	у	Z	B (Å ²)
А	Na/Ca	3 <i>e</i>	0.6667/0.3333	0.58399(14)	0	0	1.06(2)
B1	Ge	1 <i>a</i>	1	0	0	0	0.572(12)
B2	Ge	3 <i>f</i>	1	0.24739(4)	0	0.5	0.459(9)
В3	Ge	2d	1	0.333333	0.666667	0.52035(18)	0.502(10)
01	0	2d	1	0.333333	0.666667	0.1812(7)	0.87(3)
02	0	6g	1	0.4556(4)	0.1530(3)	0.3126(4)	0.80(3)
O3	Ο	6g	1	0.1207(4)	0.2098(3)	0.2293(4)	0.87(3)

Table S3. Structural parameters of $Na_2CaGe_{5.94}Cr_{0.06}O_{14}$.

Due to the low concentration of Cr^{3+} , the related parameters were not refined.

References:

- 1. R. Oishi, M. Yonemura, Y. Nishimaki, S. Torii, A. Hoshikawa, T. Ishigaki, T. Morishima, K. Mori and T. Kamiyama, *Nucl. Instrum. Methods Phys. Res., Sect. A*, 2009, **600**, 94-96.
- 2. R. Oishi Tomiyasu, M. Yonemura, T. Morishima, A. Hoshikawa, S. Torii, T. Ishigaki and T. Kamiyama, *J. Appl. Crystallogr.*, 2012, **45**, 299-308.
- 3. G. Kresse and J. Furthmüller, *Comput. Mater. Sci.*, 1996, **6**, 15-50.
- 4. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen and L. D. Marks, *J. Chem. Phys.*, 2020, **152**, 074101.
- 5. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou and K. Burke, *Phys. Rev. Lett.*, 2008, **100**, 136406.
- 6. A. D. Becke and E. R. Johnson, J. Chem. Phys., 2006, **124**, 221101.
- 7. F. Tran and P. Blaha, *Phys. Rev. Lett.*, 2009, **102**, 226401.
- 8. O. L. Anderson, J. Phys. Chem. Solids, 1963, 24, 909-917.
- J. Ueda, T. Minowa, J. Xu, S. Tanaka, T. Nakanishi, T. Takeda and S. Tanabe, ACS Appl. Opt. Mater., 2023, 1, 1128-1137.
- 10. Y. Wei, Z. Gao, S. Liu, S. Chen, G. Xing, W. Wang, P. Dang, A. A. Al Kheraif, G. Li and J. Lin, *Adv. Opt. Mater.*, 2020, **8**, 1901859.
- 11. H. Liu, H. Liang, W. Zhang, Q. Zeng and D. Wen, *Chem. Eng. J.*, 2021, **410**, 128367.
- 12. D. Wen, H. Liu, Y. Guo, Q. Zeng, M. Wu and R. S. Liu, *Angew. Chem. Int. Ed.*, 2022, **61**, e202204411.