Electronic Supporting Information (ESI)

What do we know about bifunctional cage-like T₈ silsesquioxanes? Theory *versus* lab routine

Kamila Fuchs^a, Edyta Nizioł^a, Jolanta Ejfler^a, Wiktor Zierkiewicz^b, Anna Władyczyn^a and Łukasz John^{a,*}

^a Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
 ^b Faculty of Chemistry, Wrocław University of Science and Technology, 27 Wybrzeże

Wyspiańskiego, 50-370 Wrocław, Poland

*Corresponding author: Łukasz John, e-mail: lukasz.john@uwr.edu.pl

Table of contents

1. Characterization of phenylhepta(isobutyl)-POSS T₈(*i*-Bu)₇(Ph) (1)

Figure S1.	¹ H NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 1	3
Figure S2.	¹³ C NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 1	3
Figure S3.	²⁹ Si NMR (600 MHz, CDCl ₃ , 300 K) spectrum of 1	4
Figure S4.	FT-IR spectrum (KBr pellet) of 1	4
Figure S5.	MALDI-MS ($[M + Na]^+$) of 1	5

2. Characterization of partially condensed trisilanol phenylhexa(isobutyl)-POSS T7(*i*-Bu)6(Ph)(OH)3 (2)

Figure S6.	¹ H NMR (600 MHz, CDCl ₃ , 300 K) spectrum of 2	5
Figure S7.	¹³ C NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 2	6
Figure S8.	²⁹ Si NMR (600 MHz, CDCl ₃ , 300 K) spectrum of 2	6
Figure S9.	FT-IR spectrum (KBr pellet) of 2	7
Figure S10.	MALDI-MS ($[M + Na]^+$) of 2	7
Figure S11.	DOSY NMR of 2	8

3.	Diphenylhexa(isobutyl)-POSS	T8(<i>i</i> -Bu)6(Ph)2	synthesis	attempt	(instead	_
	characterization of trisilanol he	pta(isobutyl)-PO	SS T7(<i>i</i> -Bu)	7(OH)3 (3)		

Figure S12.	¹ H NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 3	8
Figure S13.	¹³ C NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 3	9
Figure S14.	²⁹ Si NMR (600 MHz, CDCl ₃ , 300 K) spectrum of 3	9
Figure S15.	MALDI-MS ($[M + Na]^+$) of 3	10
Figure S16.	DOSY NMR of 3	10
Figure S17.	Molecular structure of 3	11

4. Quantum calculations

Figure S18.	Relative Gibbs free energies (kcal/mol) for DFT optimized POSS	
	structures	12
Table S1.	The calculated HOMO-LUMO energy gaps and quantum chemical	
	properties of POSS complexes	15
Figure S19.	The calculated HOMO and LUMO energy levels and HOMO-LUMO	
	energy gaps of optimized POSS models	17
Table S2.	Energies of calculated POSS models	19

Figure S1. ¹H NMR (500 MHz, CDCl₃, 300 K) spectrum of 1.

Figure S2. ¹³C NMR (500 MHz, CDCl₃, 300 K) spectrum of 1.

Figure S4. FT-IR spectrum (KBr pellet) of 1.

Figure S6. ¹H NMR (600 MHz, CDCl₃, 300 K) spectrum of 2.

Figure S7. ¹³C NMR (500 MHz, CDCl₃, 300 K) spectrum of 2.

Figure S8. ²⁹Si NMR (600 MHz, CDCl₃, 300K) spectrum of 2.

Figure S12. ¹H NMR (500 MHz, CDCl₃, 300 K) spectrum of **3**.

Figure S13. ¹³C NMR (500 MHz, CDCl₃, 300 K) spectrum of 3.

Figure S14. ²⁹Si NMR (600 MHz, CDCl₃, 300K) spectrum of 3.

Figure S16. DOSY NMR of 3.

Figure S17. Molecular structure of 3.

Figure S18. Relative Gibbs free energies (kcal/mol) for DFT optimized POSS structures.

	Molecular Orbitals	Energy	Energy gap	Ionization potential (I)	Electron affinity (A)	Global hardness (η)	Electronegativity (χ)	Chemical potential (µc)	Global softness (σ) ^a	Global electrophilicity (w)
T ₈ (<i>i</i> -Bu) ₈	HOMO	-7.72	8.60	7.72	-0.88	4.30	3.42	-3.42	0.12	1.36
T8(<i>i</i> -Bu)8	HOMO LUMO	-7.77 0.77	8.53	7.77	-0.77	4.27	3.50	-3.50	0.12	1.44
T ₈ (<i>i</i> -Bu) ₇ (C ₃ H ₆ NH ₂)	HOMO LUMO	-6.42 0.94	7.36	6.42	-0.94	3.68	2.74	-2.74	0.14	1.02
ortho-T7(i-Bu)6(C3H6NH2)(OH)3	HOMO LUMO	-6.26 0.67	6.93	6.26	-0.67	3.47	2.80	-2.80	0.14	1.13
meta-T7(i-Bu)6(C3H6NH2)(OH)3	HOMO LUMO	-6.46 0.86	7.31	6.46	-0.86	3.66	2.80	-2.80	0.14	1.07
para-T ₇ (i-Bu) ₆ (C ₃ H ₆ NH ₂)(OH) ₃	HOMO LUMO	-6.37 0.67	7.04	6.37	-0.67	3.52	2.85	-2.85	0.14	1.15
T8(<i>i</i> -Bu)7(C2H3)	HOMO LUMO	-7.44 -0.19	7.26	7.44	0.19	3.63	3.82	-3.82	0.14	2.01
ortho-T7(i-Bu)6(C2H3)(OH)3	HOMO LUMO	-7.45 -0.20	7.25	7.45	0.20	3.63	3.82	-3.82	0.14	2.02
meta-T7(i-Bu)6(C2H3)(OH)3	HOMO LUMO	-7.56 -0.36	7.20	7.56	0.36	3.60	3.96	-3.96	0.14	2.17
para-T7(i-Bu)6(C2H3)(OH)3	HOMO LUMO	-7.51 -0.27	7.24	7.51	0.27	3.62	3.89	-3.89	0.14	2.09
T8(<i>i</i> -Bu)7(Ph)	HOMO LUMO	-6.85 -0.48	6.37	6.85	0.48	3.19	3.66	-3.66	0.16	2.10
ortho-T7(i-Bu)6(Ph)(OH)3	HOMO LUMO	-6.81 -0.42	6.39	6.81	0.42	3.19	3.61	-3.61	0.16	2.04
meta-T7(i-Bu)6(Ph)(OH)3	HOMO LUMO	-6.92 -0.55	6.37	6.92	0.55	3.18	3.73	-3.73	0.16	2.19
para-T7(i-Bu)6(Ph)(OH)3	HOMO LUMO	-6.86 -0.48	6.38	6.86	0.48	3.19	3.67	-3.67	0.16	2.12
Ts(Ph)s	HOMO LUMO	-6.69 -0.56	6.12	6.69	0.56	3.06	3.62	-3.62	0.16	2.14
T7(Ph)7()H)3	HOMO LUMO	-6.68 -0.58	6.10	6.68	0.58	3.05	3.63	-3.63	0.16	2.17

Table S1. The calculated HOMO-LUMO energy gaps and quantum chemical properties of POSS complexes. Data are given in eV.

To(Ph)7(C2H4NH2)	HOMO	-6.24	5 72	6.24	0.52	2.86	3 38	-3.38	0.17	2.00
18(11)/(C31161(112)	LUMO	-0.52	5.72			2.00	5.50	-5.50	0.17	2.00
ortho_T_(Ph)_(C_1H_NH_1)(OH)_	HOMO	-6.21	5 62	6.21	0.59	2 01	3 40	-3.40	0.18	2.06
01110-17(111)6(C31161(112)(011)3	LUMO	-0.59	5.02	0.21		2.01	5.40	-3.40	0.10	2.00
mata T-(Ph)/(C-H-NH-)(OH)-	HOMO	-6.19	5 60	6 10	0.50	2.80	2 20	2 20	0.19	2.05
<i>meta</i> -17(FII)6(C3H6INH2)(OH)3	LUMO	-0.59	5.00	0.19	0.39	2.80	5.59	-3.39	0.18	2.05
para-T7(Ph)6(C3H6NH2)(OH)3	HOMO	-6.37	5 70	6 27	0.58	2.80	2 17	2 47	0.17	2.00
	LUMO	-0.58	5.19	0.57	0.38	2.89	5.47	-3.47	0.17	2.09
	HOMO	-6.67	6.11	6.67	0.56	3.06	2.61	-3.61	0.16	2.13
18(11)7(C2113)	LUMO	-0.56		0.07			5.01			
$autho T_{-}(\mathbf{D}\mathbf{h})_{c}(\mathbf{C}_{-}\mathbf{U}_{-})(\mathbf{O}\mathbf{U})_{c}$	HOMO	-6.68	(00	6.69	0.59	3.04	2.64	-3.64	0.16	2.17
<i>orino-</i> 17(FII)6(C2H3)(OH)3	LUMO	-0.59	0.09	0.08			5.04			2.17
mata T-(Bh) (C-II-)(OII)-	HOMO	-6.65	6.04	6.65	0.60	2.02	2.62	2 62	0.17	2.17
<i>meta</i> -17(Pf)6(C2H3)(OH)3	LUMO	-0.60	0.04	0.05	0.60	5.02	5.02	-3.02	0.17	2.17
$\mathbf{p}_{aug} \mathbf{T}_{-}(\mathbf{P}\mathbf{h}) \cdot (\mathbf{C}_{-}\mathbf{H}_{-})(\mathbf{O}\mathbf{H})$	HOMO	-6.63	6.02	6.62	0.61	2.01	2.62	2 62	0.17	2.19
$para-17(Pn)_6(C_2H_3)(OH)_3$	LUMO	-0.61	0.02	0.05	0.01	3.01	5.02	-3.02	0.1/	2.18

^a data are given in eV⁻¹ $I = -E_{HOMO}; A = -E_{LUMO}; \eta = \frac{I-A}{2}; \chi = \frac{I+A}{2}; \mu_c = -\chi; \sigma = \frac{1}{2\eta}; \omega = \frac{\mu^2}{2\eta}$

Figure S19. The calculated HOMO (orange) and LUMO (blue) energy levels and their visualization, and HOMO-LUMO energy gaps (red) of optimized POSS models. HOMO – orange; LUMO – blue; ΔE_{H-L} – red

		E _{tot}	$E_{\text{tot}} + ZPE$	Н	G	S ^a
T 8(<i>i</i> - Bu)8		-2813122	-2812459	-2812416	-2812524	0.365
T7(<i>i</i> -Bu)7(OH)3		-2533419	-2532815	-2532775	-2532877	0.344
	[T7(<i>i</i> -Bu)7(OH)3]2	-5066879	-5065669	-5065589	-5065776	0.625
T ₈ (<i>i</i> -Bu)7(C ₃ H ₆ NH ₂)		-2823175	-2822518	-2822475	-2822584	0.365
	T7(<i>i</i> -Bu)6(C3H6NH2)(OH)3	-2543470	-2542872	-2542833	-2542935	0.342
tho	[T7(<i>i</i> -Bu)6(C3H6NH2)(OH)3]2	-5086989	-5085792	-5085712	-5085901	0.631
or	T8(<i>i</i> -Bu)6(C3H6NH2)2	-2833231	-2832580	-2832537	-2832646	0.364
	T7(<i>i</i> -Bu)6(C3H6NH2)(OH)3	-2543473	-2542875	-2542836	-2542938	0.344
eta	$[T_7(i-Bu)_6(C_3H_6NH_2)(OH)_3]_2$	-5086997	-5085800	-5085721	-5085909	0.631
те	$T_8(i-Bu)_6(C_3H_6NH_2)_2$	-2833229	-2832579	-2832536	-2832646	0.368
ra	T7(<i>i</i> -Bu)6(C3H6NH2)(OH)3	-2543470	-2542873	-2542833	-2542935	0.340
	[T7(<i>i</i> -Bu)6(C3H6NH2)(OH)3]2	-5086989	-5085792	-5085713	-5085898	0.619
ba	T8(<i>i</i> -Bu)6(C3H6NH2)2	-2833229	-2832579	-2832536	-2832645	0.367
T8(<i>i</i> -Bu)7(C2H3)		-2762997	-2762384	-2762343	-2762449	0.358
	T7(<i>i</i> -Bu)6(C2H3)(OH)3	-2483295	-2482742	-2482704	-2482805	0.338
tho	[T ₇ (<i>i</i> - Bu) ₆ (C ₂ H ₃)(OH) ₃] ₂	-4966633	-4965524	-4965448	-4965626	0.595
or	$T_8(i-Bu)_6(C_2H_3)_2$	-2712874	-2712312	-2712273	-2712373	0.337
	T7(<i>i</i> -Bu)6(C2H3)(OH)3	-2483297	-2482743	-2482706	-2482803	0.326
eta	[T7(<i>i</i> -Bu) ₆ (C ₂ H ₃)(OH) ₃] ₂	-4966644	-4965534	-4965460	-4965635	0.589
ше	T8(<i>i</i> -Bu)6(C2H3)2	-2712875	-2712312	-2712273	-2712374	0.339
	T7(<i>i</i> -Bu)6(C2H3)(OH)3	-2483297	-2482744	-2482706	-2482804	0.330
ra	[T ₇ (<i>i</i> - Bu) ₆ (C ₂ H ₃)(OH) ₃] ₂	-4966635	-4965525	-4965450	-4965625	0.586
pa	$T_8(i-Bu)_6(C_2H_3)_2$	-2712874	-2712312	-2712273	-2712373	0.338
T8(<i>i</i> -Bu)7(Ph	n)	-2859426	-2858782	-2858740	-2858849	0.365
	T7(<i>i</i> -Bu)6(Ph)(OH)3	-2579723	-2579139	-2579100	-2579202	0.344
tho	[T7(<i>i</i> -Bu)6(Ph)(OH)3]2	-5159491	-5158322	-5158243	-5158431	0.631
011	T8(<i>i</i> -Bu)6(Ph)2	-2905731	-2905108	-2905066	-2905175	0.364

Table S2. Energies of calculated POSS models. Data are given in kcal/mol.

	T7(<i>i</i> -Bu)6(Ph)(OH)3	-2579723	-2579139	-2579100	-2579203	0.344
neta	[T7(<i>i</i> -Bu)6(Ph)(OH)3]2	-5159503	-5158333	-5158255	-5158438	0.613
<u> </u>	T8(<i>i</i> -Bu)6(Ph)2	-2905731	-2905108	-2905066	-2905176	0.369
	T7(<i>i</i> -Bu)6(Ph)(OH)3	-2579718	-2579135	-2579095	-2579198	0.346
para	[T7(<i>i</i> -Bu)6(Ph)(OH)3]2	-5159491	-5158320	-5158243	-5158425	0.613
ł	T ₈ (<i>i</i> -Bu) ₆ (Ph) ₂	-2905731	-2905107	-2905065	-2905174	0.363
	T ₈ (Ph) ₈	-3183560	-3183058	-3183018	-3183126	0.363
	T7(Ph)7(OH)3	-2857554	-2857091	-2857054	-2857156	0.339
	[T7(Ph)7(OH)3]2	-5715163	-5714235	-5714163	-5714342	0.599
T8(Ph)7(C3H	H6NH2)	-3147310	-3146794	-3146755	-3146863	0.363
0	$T_7(Ph)_6(C_3H_6NH_2)(OH)_3$	-2821304	-2820827	-2820790	-2820892	0.341
orth	[T7(Ph)6(C3H6NH2)(OH)3]2	-5642666	-5641710	-5641637	-5641813	0.590
0	$T_8(Ph)_6(C_3H_6NH_2)_2$	-3111059	-3110530	-3110489	-3110600	0.372
meta	$T_7(Ph)_6(C_3H_6NH_2)(OH)_3$	-2821304	-2820827	-2820790	-2820891	0.339
	[T7(Ph)6(C3H6NH2)(OH)3]2	-5642662	-5641706	-5641633	-5641812	0.599
	$T_8(Ph)_6(C_3H_6NH_2)_2$	-3111062	-3110532	-3110492	-3110599	0.358
2	$T_7(Ph)_6(C_3H_6NH_2)(OH)_3$	-2821305	-2820828	-2820791	-2820891	0.336
parc	$[T_7(Ph)_6(C_3H_6NH_2)(OH)_3]_2$	-5642655	-5641700	-5641627	-5641808	0.608
	$T_8(Ph)_6(C_3H_6NH_2)_2$	-3111060	-3110531	-3110491	-3110599	0.363
T8(Ph)7(C2H	I 3)	-3087132	-3086660	-3086623	-3086726	0.348
0	T7(Ph)6(C2H3)(OH)3	-2761127	-2760694	-2760660	-2760756	0.323
ortho	[T7(Ph)6(C2H3)(OH)3]2	-5522304	-5521437	-5521368	-5521535	0.563
0	T8(Ph)6(C2H3)2	-2990705	-2990263	-2990227	-2990327	0.333
2	$T_7(Ph)_6(C_2H_3)(OH)_3$	-2761127	-2760694	-2760659	-2760755	0.321
neta	$[T_7(Ph)_6(C_2H_3)(OH)_3]_2$	-5522300	-5521433	-5521364	-5521538	0.583
	$T_8(Ph)_6(C_2H_3)_2$	-2990705	-2990263	-2990227	-2990327	0.335
1	T7(Ph)6(C2H3)(OH)3	-2761127	-2760694	-2760660	-2760754	0.317
arc	[T7(Ph)6(C2H3)(OH)3]2	-5522300	-5521433	-5521363	-5521534	0.573
ł	T8(Ph)6(C2H3)2	-2990705	-2990263	-2990227	-2990327	0.336

^a data are given in kcal/mol