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Luminescence as a function of
temperature and different points of
the sample

In most cases, excitons bound to defects exhibit
a much faster temperature-induced quenching
compared to free excitons. For instance, in the study
of FAJMA,,PbI3 [1], various spectral lines below the
free exciton were attributed to different defect types,
and the luminescence of these defects was observed
to decay well below 100 K. In our investigation, as
depicted in Fig.SI. 1, the line assigned to the Rashba
exciton demonstrates a quenching rate similar to or
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even slower than that of the free exciton. Hence,
despite the absence of substantial evidence
supporting the Rashba effect assignment in this study,
it was designated as the Rashba exciton. It is worth
noting that the temperature dependence of the Rashba
exciton's position aligns with the findings of [2]. In
contrast, the authors of [2] concluded that CsPbBr;
lacks Rashba splitting at temperatures below 90 K,
contradicting our observations. However, the work
[3] provides compelling evidence supporting the
presence of the Rashba effect in CsPbBr; at low
temperatures. In conclusion, the assignment of the
542 nm line remains contentious, necessitating further
investigations to address this issue.
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Fig.SI. 1. CsPbBr; luminescence dependence on temperature. (a) — luminescence spectra, (b) — position of the lines and the
integral intensity of the luminescence.

“ Institute of Physics, Polish Academy of Sciences, Lotnikéw 32/46, 02668, Warsaw,

Poland

b lvan Franko National University of Lviv, 8 Kyryla i Mefodiya St, Lviv, Ukraine

This journal is © The Royal Society of Chemistry [year]

The low-temperature spectra of the sample's
luminescence are presented in Fig.SI. 2. These spectra
were obtained by exciting the sample with a laser
focused on various points. All spectra are normalized
to the intensity of the free exciton. As depicted in
Fig.SIL. 2, different regions of the sample exhibit
slightly different luminescence spectra, indicating

sample inhomogeneity. Hb?n eﬁ)ﬁgrsn%ﬂggar’{vg_ e Iﬂggm)a



effect relies on the breaking of inversion symmetry sample is nonhomogeneous or contains defects, the
within the CsPbBr; crystal structure. In the symmetry may be disrupted in certain regions,
orthorhombic CsPbBr;, lead (Pb) occupies a site that thereby exhibiting Rashba luminescence.

possesses inversion symmetry. However, if the
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Fig.SI. 2. Comparison of the luminescence of different parts of the CsPbBr; sample at liquid helium temperature.

sample, with the [002] orientation. It is important to
XRD Measurements of the CsPbBr; note that the crystal was not intentionally oriented
prior to the measurement, resulting in a random
orientation. The powder diffraction analysis also
exhibited distinct diffraction lines corresponding to
the orthorhombic (Pbnm) phase.

As shown in Fig.SL. 3, the single crystal X-ray
diffraction (XRD) measurements confirmed the
presence of the orthorhombic (Pbnm) phase in the
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Fig.SI. 3. The results of the XRD measurements of single crystal and powdered CsPBBrs.

Fig.SI. 4a are presented in the main text. It is worth
Luminescence spectra noting that the spectra in panels a and b exhibit slight
differences. This variation can be attributed to the fact
that the measurements were performed on two
different pieces of the same inhomogeneous sample.
The presence of inhomogeneity in the sample is also
evident in Fig.SI. 2.

To assess the reproducibility of the experiment,
multiple measurements of CsPbBr; under pressure
were conducted. The data used in this study
primarily came from two sets of measurements, as
shown in Fig.SI. 4. Specifically, selected curves from
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Fig.SI. 4. Low-temperature luminescence of CsPbBrj as a function of high pressure. (a) and (b) are two measurements of
different pieces of the same sample (from the melt, number 471). Oil was used as a pressure-transmitting medium

Fittings of the spectra with Gaussian
functions

Fig.SI. 6 illustrates several luminescence spectra
along with their corresponding fittings. It can be
observed that the phonon replicas and defect-bound
excitons diminish rapidly with increasing pressure,
whereas the intensity of the Rashba exciton exhibits
an opposite trend by increasing. As the pressure rises,

Peak Analysis

the accuracy of the fittings decreases, leading to
multiple options of slightly different Gaussian
fittings. This is demonstrated in Fig.SI.5, which
showcases two different fitting options at a pressure
of 2.3 GPa. Initially, they may appear significantly
distinct, but when the respective parameters are
inserted into the dependencies shown in Fig.SlL. 7,
both options yield acceptable results due to the
substantial scattering of the data points.

Peak Analysis
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Fig.SI. 5. Two possible options for the fitting of the luminescence spectra at 2.3 GPa.
Journal Name, [year], [vol.] This journal is © The Royal Society of Chemistry [year]



Peak Analysis

Peak Analysis
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Fig.SI. 6. Fitting of some CsPbBr; high-pressure spectra (0.2, 0.34, 0.98, and 1.53 GPa).

Intensity and position of the
luminescence lines as a function of
pressure

If we consider all the data from both
measurements (refer to Fig.Sl. 4), the pressure
dependence of the intensity would resemble that
shown in Fig.SL. 7a. Consequently, the integral
intensity was calculated by integrating under the
luminescence spectrum. Subsequently, the intensity
of the Rashba exciton was estimated by identifying
the maximum intensity of the Rashba line. Similarly,
the intensity of the free exciton was estimated as the
difference between the integral intensity and the
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Rashba exciton intensity. This approach tends to
overestimate the intensity of the free exciton,
particularly in the low-pressure range (below 0.3
GPa), due to the presence of other lines in the spectra
at that pressure range. Nevertheless, this approach
yields qualitatively similar results to those obtained
from the fitting in Fig.SI.7 a. The fitting process
involved additional data processing steps such as
background subtraction, selecting the number of
Gaussian functions for the fit, and occasionally
manually adjusting or fixing certain fit parameters. In
contrast, the second approach (Fig.SI. 7b) required
less manual intervention. Considering the reduced
need for manual adjustments, lower data scattering,
and overall similarity of the results, the outcome of the
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second approach was presented in the main text of
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Fig.SI. 7. Intensity of the luminescence lines (a) — from fitting, (b) — a copy of Fig. 3 from the main text.
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