Supporting Information

Aggregation-induced emission of cyclometalated rhodium(III) and iridium(III) phenylpyridine complexes with ancillary 1,3-diketones

Marina A. Kiseleva, Andrei V. Churakov, Ilya V. Taydakov, Mikhail T. Metlin, Sergey A. Kozyukhin and Stanislav I. Bezzubov

- Part 1. Experimental Section.
- Part 2. NMR spectroscopy and HRMS data: Figures S1 S27, Table S1.

Part 3. X-ray crystallography: Tables S2 – S3, Figures S28 – S37.

Part 4. Spectroscopic study. Figure S38 – S47.

Part 5. Computational details: Tables S4 – S9, Figures S48 – S50.

1. Experimental Section

Materials and methods

All commercially available reagents were at least reagent grade and used without further purification. Solvents were distilled and dried according to standard procedures. Preparation of rhodium(III) and iridium(III) complexes was carried out under dry argon. Purification and other manipulations with complexes were performed in air.

¹H NMR spectra were acquired at 25 °C on a Bruker Avance 400 instrument and chemical shifts were reported in ppm referenced to residual solvent signals. High resolution and accurate mass measurements were carried out using a BrukermicroTOF-QTM APPI-TOF (Atmospheric Pressure PhotoIonization / Time of Flight) spectrometer. Electronic absorption spectra were measured on an OKB Spectr SF-2000 spectrophotometer. Luminescence measurements of the complexes in solution were performed on a Perkin-Elmer LS-55 spectrometer. For solids and suspensions, luminescence measurements were performed on a Horiba Fluorolog QM spectrometer equipped with a 75 W xenon arc lamp as the excitation source for steady state experiments, 150 W xenon flash lamp and pulse DeltaLED sources for kinetic measurements. An R-13456 photomultiplier was used as a detector. The quantum yield measurements were carried out on solid samples with a Spectralone-covered G8 integration sphere (GMP SA, Switzerland) according to the absolute method of Wrighton [1-3]. Each sample was measured several times under slightly different experimental conditions. The estimated error for quantum yields was \pm 10%. Powdered samples were placed in quartz tubes (4 mm o.d.), flushed with dry nitrogen and sealed. These tubes were used for both luminescent and quantum yield measurements. An Econix-Expert Ltd Ecotest-VA polarograph was used for electrochemical measurements with a glassy carbon working electrode, platinum counter electrode, and saturated Ag/AgCl reference electrode. Polarographic curves were recorded in Ar-saturated acetonitrile with 0.1 M (n-Bu₄N)PF₆ at a scan rate of 100 mV/s. Ferrocene was used as an external standard prior to and after measurements. Scanning electron microscopic (SEM) imaging of the precipitated complexes was performed using a Helios G4CX FEI (Thermo Fisher Scientific Inc., Waltham, MA, USA).

Synthesis

Preparation of cyclometalated Ir(III) and Rh(III) chloride precursors:

 $IrCl_3 \cdot 3H_2O$ (0.055 g, 0.156 mmol) or $RhCl_3 \cdot 3H_2O$ (0.055 g, 0.209 mmol) and 2-phenylpyridine (0.390 mmol or 0.523 mmol, respectively) were refluxed for 18 h in 2-

ethoxyethanol (15 mL). After cooling to room temperature, the resulting yellow solids were collected, washed with ethanol, ether, dissolved in CH_2Cl_2 , purified by recrystallization from CH_2Cl_2 /petroleum ether and dried in vacuo.

[Ir(ppy)₂Cl]₂: yellow – orange powder, yield 80%.

[**Rh(ppy)**₂**Cl**]₂: pale yellow powder, yield 76%.

¹H NMR (400 MHz, CDCl₃) δ 9.22 (d, *J* = 5.5 Hz, 4H), 7.89 – 7.79 (m, 8H), 7.57 – 7.54 (m, 4H), 6.85 – 6.76 (m, 8H), 6.65 (t, *J* = 7.5 Hz, 4H), 5.95 (d, *J* = 7.8 Hz, 4H). M.p. >310 °C.

Complexes Rh1 – Rh4 and Ir1 – Ir4 were obtained according to a general procedure:

Cyclometalated Ir(III) or Rh(III) chloride (1 mmol), corresponding diketone (2.5 mmol) and K_2CO_3 (10 mmol) were mixed in dry acetonitrile (5 ml) and refluxed for 16-20 h in darkness. The precipitate formed (from pale yellow to dark orange) was collected by filtration, washed with water, dissolved in CH₂Cl₂, purified by recrystallization from CH₂Cl₂/petroleum ether and dried in vacuo.

Rh(ppy)₂(dbm) (Rh1): yellow powder, yield 80%.

¹H NMR (400 MHz, CDCl₃) δ 8.61 – 8.57 (m, 2H), 7.87 (d, *J* = 8.0 Hz, 2H), 7.82 – 7.77 (m, 6H), 7.64 (dd, *J*₁ = 7.7, *J*₂ = 1.3 Hz, 2H), 7.39 – 7.34 (m, 2H), 7.33 – 7.28 (m, 4H), 7.13 – 7.08 (m, 2H), 6.95 (td, *J*₁ = 7.5, *J*₂ = 1.2 Hz, 2H), 6.83 (td, *J*₁ = 7.5, *J*₂ = 1.4 Hz, 2H), 6.56 (s, 1H), 6.41 (d, *J* = 7.6 Hz, 2H).

HRMS (API) m/z: [M+H]⁺ Calcd for C₃₇H₂₈N₂O₂Rh 635.1201; Found 635.1194.

M.p. >310 °C.

Rh(ppy)₂(bza) (Rh2): pale yellow powder, yield 85%.

¹NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 5.5 Hz, 1H), 8.53 (d, *J* = 5.5 Hz, 1H), 7.90 – 7.80 (m, 4H), 7.72 – 7.68 (m, 2H), 7.64 – 7.59 (m, 2H), 7.35 – 7.30 (m, 1H), 7.26 – 7.23 (m, 2H), 7.19 – 7.11 (m, 2H), 6.95 – 6.88 (m, 2H), 6.82 – 6.77 (m, 2H), 6.38 – 6.32 (m, 2H), 5.89 (s, 1H), 2.02 (s, 3H).

HRMS (API) m/z: $[M]^+$ Calcd for $C_{32}H_{25}N_2O_2Rh$ 572.0971; Found 572.0963.

М.р. 279-280 °С.

Rh(ppy)₂(tfbza) (Rh3): yellow powder, yield 92%.

¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 5.6 Hz, 1H), 8.41 (d, J = 5.6 Hz, 1H), 7.91 – 7.83 (m, 4H), 7.77 – 7.73 (m, 2H), 7.64 – 7.60 (m, 2H), 7.45 – 7.39 (m, 1H), 7.34 – 7.29 (m, 2H), 7.23 – 7.18 (m, 1H), 7.17 – 7.12 (m, 1H), 6.99 – 6.91 (m, 2H), 6.85 – 6.77 (m, 2H), 6.36 (d, J = 7.7 Hz, 1H), 6.32 – 6.28 (m, 2H).

HRMS (API) m/z: $[M]^+$ Calcd for $C_{32}H_{22}F_3N_2O_2Rh$ 626.0688; Found 626.0682.

M.p. 290-291 °C.

Rh(ppy)₂(tta) (Rh4): yellow powder, yield 84%.

¹H NMR (400 MHz, CDCl₃) δ 8.53 – 8.50 (m, 1H), 8.47 – 8.43 (m, 1H), 7.90 – 7.83 (m, 4H), 7.63 – 7.59 (m, 2H), 7.56 (dd, J_1 = 3.8, J_2 = 1.1 Hz, 1H), 7.40 (dd, J_1 = 5.0, J_2 = 1.1 Hz, 1H),

7.23 – 7.19 (m, 1H), 7.19 – 7.14 (m, 1H), 7.01 – 6.90 (m, 3H), 6.84 – 6.76 (m, 2H), 6.34 (d, *J* = 7.6 Hz, 1H), 6.28 (d, *J* = 7.6 Hz, 1H), 6.15 (s, 1H).

HRMS (API) m/z: $[M]^+$ Calcd for $C_{30}H_{20}F_3N_2O_2RhS$ 632.0253; Found 632.0243.

M.p. >310 °C.

Ir(ppy)₂(dbm) (Ir1): light orange powder, yield 65%.

¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 5.0 Hz, 2H), 7.87 (d, J = 8.1 Hz, 2H), 7.84 – 7.79 (m, 4H), 7.72 – 7.66 (m, 2H), 7.62 – 7.58 (m, 2H), 7.43 – 7.38 (m, 2H), 7.33 – 7.27 (m, 4H), 7.08 – 7.02 (m, 2H), 6.89 – 6.84 (m, 2H), 6.75 (td, $J_1 = 7.4$, $J_2 = 1.2$ Hz, 2H), 6.59 (s, 1H), 6.41 – 6.34 (m, 2H).

HRMS (API) m/z: [M]⁺ Calcd for C₃₇H₂₇N₂O₂Ir 724.1699; Found 724.1700.

M.p. 302-303 °C.

Ir(ppy)₂(bza) (Ir2): dark yellow powder, yield 86%.

¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, *J* = 5.6 Hz, 1H), 8.54 (d, *J* = 5.5 Hz, 1H), 7.86 (t, *J* = 8.9 Hz, 2H), 7.75 – 7.68 (m, 4H), 7.60 – 7.56 (m, 2H), 7.39 – 7.33 (m, 1H), 7.27 – 7.23 (m, 2H), 7.13 – 7.05 (m, 2H), 6.86 – 6.80 (m, 2H), 6.75 – 6.69 (m, 2H), 6.37 – 6.28 (m, 2H), 5.90 (s, 1H), 1.92 (s, 3H).

HRMS (API) m/z: [M]⁺ Calcd for C₃₂H₂₅N₂O₂Ir 662.1542; Found 662.1540.

M.p. 274-274 °C.

Ir(ppy)₂(tfbza) (Ir3): orange powder, yield 89%.

¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, *J* = 5.5 Hz, 1H), 8.41 (d, *J* = 5.7 Hz, 1H), 7.88 (t, *J* = 8.2 Hz, 2H), 7.79 – 7.73 (m, 4H), 7.60 – 7.56 (m, 2H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.31 (t, *J* = 7.8 Hz, 2H), 7.18 – 7.14 (m, 1H), 7.12 – 7.07 (m, 1H), 6.91 – 6.83 (m, 2H), 6.77 – 6.70 (m, 2H), 6.34 – 6.30 (m, 2H), 6.27 (d, *J* = 7.6 Hz, 1H).

HRMS (API) m/z: [M]⁺ Calcd for C₃₂H₂₂F₃N₂O₂Ir 716.1259; Found 716.1257.

M.p. 298-299 °C.

Ir(ppy)₂(tta) (Ir4): dark orange - red powder, yield 74%.

¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 5.7 Hz, 1H), 8.46 (d, J = 5.7 Hz, 1H), 7.87 (t, J = 8.4 Hz, 2H), 7.79 – 7.73 (m, 2H), 7.64 – 7.62 (m, 1H), 7.57 (d, J = 8.0 Hz, 2H), 7.49 – 7.47 (m,

1H), 7.19 – 7.14 (m, 1H), 7.14 – 7.10 (m, 1H), 7.02 – 6.98 (m, 1H), 6.89 – 6.82 (m, 2H), 6.76 – 6.69 (m, 2H), 6.31 – 6.28 (m, 1H), 6.26 – 6.23 (m, 1H), 6.16 (s, 1H).

HRMS (API) m/z: $[M]^+$ Calcd for $C_{30}H_{20}F_3N_2O_2IrS$ 722.0821; Found 722.0822.

M.p. >310 °C.

2. NMR spectroscopy data and high-resolution mass-spectrometry data

Figure S2. ¹H NMR spectrum of Rh1 (400 MHz, 298K, CDCl₃).

Figure S3. ¹H NMR spectrum of Rh2 (400 MHz, 298K, CDCl₃).

Figure S4. The aromatic part of ¹H NMR spectrum of Rh2 (400 MHz, 298K, CDCl₃).

Figure S6. ¹H NMR spectrum of Rh4 (400 MHz, 298K, CDCl₃).

Figure S7. ¹H NMR spectrum of Ir1 (400 MHz, 298K, CDCl₃).

Figure S8. ¹H NMR spectrum of Ir2 (400 MHz, 298K, CDCl₃).

Figure S9. The aromatic part of ¹H NMR spectrum of Ir2 (400 MHz, 298K, CDCl₃).

Figure S10. ¹H NMR spectrum of Ir3 (400 MHz, 298K, CDCl₃).

Figure S11. ¹H NMR spectrum of Ir4 (400 MHz, 298K, CDCl₃).

Compound	$[M(ppy)_2]^+$		[M(ppy) ₂	CH ₃ CN] ⁺	[M(ppy) ₂ (O^O)+H] ⁺		
F	Calcd	Found	Calcd	Found	Calcd	Found	
Rh1		411.0374		452.0633	635.1201	635.1194	
Rh2	411.0369	411.0367	452.0634	452.0627	572.0971	572.0963	
Rh3		411.0364		452.0626	626.0688	626.0682	
Rh4		411.0367		452.0627	632.0253	632.0243	
Ir1		501.0941		542.1207	724.1699	724.1700	
Ir2	501.0943	501.0936	542.1208	542.1201	662.1542	662.1540	
Ir3		501.0941		542.1206	716.1259	716.1257	
Ir4		501.0939		542.1206	722.0821	722.0822	

Table S1. HRMS data for complexes.

Figure S13. Fragment of high-resolution mass-spectrum of Rh1.

Max. 4.5e4 cps.

Figure S15. Fragment of high-resolution mass-spectrum of Rh2.

Max. 1.2e4 cps.

Figure S17. Fragment of high-resolution mass-spectrum of Rh3.

Figure S19. Fragment of high-resolution mass-spectrum of Rh4.

Max. 5345.5 cps.

Figure S21. Fragment of high-resolution mass-spectrum of Ir1.

Max. 4262.0 cps

Figure S23. Fragment of high-resolution mass-spectrum of Ir2.

Figure S25. Fragment of high-resolution mass-spectrum of Ir3.

Max. 2.8e4 cps.

Figure S27. Fragment of high-resolution mass-spectrum of Ir4.

3. X-ray crystallography

Single crystals of a cyclometalated µ-chloro-bridged rhodium(III) dimer were obtained upon slow evaporation of concentrated solutions in CH₂Cl₂ or CHCl₃. Single crystals of Rh1 -**Rh4** and Ir2 - Ir4 were obtained upon evaporation of solutions of the complexes in CH₂Cl₂/hexane (1/1 vol.). Crystallographic data were collected on Bruker SMART APEX II and D8 Venture diffractometers using graphite monochromatized Mo–K α radiation ($\lambda = 0.71073$ Å) using a ω -scan mode. Absorption correction based on measurements of equivalent reflections was applied [4]. The structures were solved by direct methods and refined by full matrix least-squares on F^2 with anisotropic thermal parameters for all non-hydrogen atoms [5, 6]. In all structures, hydrogen atoms were placed in calculated positions and refined using a riding model. The crystal of the dimer appears as a racemic twin with the ratio of the components 0.56/0.44. In structures of b-[Rh(ppy)₂Cl]₂ and Rh3, Ir2, Ir3, disordered solvent molecules were not located and their contribution was suppressed by the SQUEEZE procedure [7] which is included in the Olex2 package [8]. The phenyl ring in Rh2, diketone in Rh3, thiophene rings in Rh4, Ir4, one of the C^N ligands in **Ir3** and both ppy ligands in a-[Rh(ppy)₂Cl]₂ are disordered over two positions with approximately equal occupancies. CCDC 2093179-2093187 contain the supplementary crystallographic data for Ir2 – Ir4, a-[Rh(ppy)₂Cl]₂, b-[Rh(ppy)₂Cl]₂, Rh1 – Rh4, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

	Rh1	Rh2	Rh3	Rh4	Ir2	Ir3	Ir4	a-[Rh(ppy) ₂ Cl] ₂	b-[Rh(ppy) ₂ Cl] ₂
Empirical formula	$C_{37.5}H_{28}ClN_2O_2Rh$	$C_{32}H_{25}N_2O_2Rh$	$C_{32}H_{22}F_3N_2O_2Rh \\$	$C_{30}H_{20}F_3N_2O_2RhS$	$C_{32}H_{25}IrN_2O_2$	$C_{32}H_{22}F_3IrN_2O_2$	$C_{30}H_{20}F_3IrN_2O_2S$	$C_{44}H_{32}Cl_2N_4Rh_2$	$C_{44}H_{32}Cl_2N_4Rh_2$
M _w	676.98	572.45	626.42	632.45	661.74	715.71	721.74	893.45	893.45
Temperature (K)	100	100	150	150	100	150	100	100.15	100
Size (mm)	0.32x0.18x0.04	0.13x0.08x0.01	0.18x0.05x0.03	0.21x0.15x0.05	0.16x0.12x0.09	0.23x0.15x0.12	0.22x0.14x0.11	0.12x0.1x0.01	0.22x0.2x0.08
Cryst. system	triclinic	monoclinic	triclinic	monoclinic	monoclinic	triclinic	monoclinic	monoclinic	monoclinic
Space group	P-1	$P2_1/n$	P-1	$P2_1/c$	$P2_1/n$	P-1	$P2_1/c$	Pc	$P2_1/n$
<i>a</i> (Å)	10.5699(2)	10.0427(11)	11.4135(4)	15.4022(5)	10.1004(5)	11.4446(6)	15.3589(12)	12.7993(8)	13.4265(12)
b (Å)	11.7403(2)	23.901(2)	11.8344(4)	20.3286(6)	23.8644(13)	11.7077(6)	20.2331(16)	17.6551(10)	13.9065(11)
c (Å)	12.2502(2)	12.1579(12)	13.4479(5)	17.4956(6)	12.1714(6)	13.0847(7)	17.6076(15)	16.4434(10)	24.1630(18)
α(°)	92.2610(10)	90	70.7650(10)	90	90	71.158(2)	90	90	90
β (°)	93.1600(10)	100.002(4)	72.2520(10)	112.9990(10)	100.722(2)	75.027(2)	113.797(2)	108.775(2)	95.936(3)
γ(°)	104.3880(10)	90	67.1520(10)	90	90	67.214(2)	90	90	90
V (Å ³)	1468.03(4)	2874.0(5)	1547.45(10)	5042.5(3)	2882.6(3)	1511.82(14)	5006.5(7)	3518.0(4)	4487.4(6)
Z	2	4	2	8	4	2	8	4	4
$ ho_{ m cald}(m g\cdot m cm^{-3})$	1.532	1.323	1.344	1.666	1.525	1.572	1.915	1.687	1.322
Abs coeff (mm ⁻¹)	0.711	0.623	0.598	0.815	4.661	4.464	5.473	1.130	0.886
F(000)	690.0	1168.0	632.0	2544.0	1296.0	696.0	2800.0	1792.0	1792.0
θ range (deg)	$2.32 < \theta < 30.52$	2.41< 0 <22.49	$2.24 < \theta < 28.83$	$2.37 < \theta < 28.29$	2.41 <i>≤θ</i> ≤25.25	1.95< <i>θ</i> ≤26.00	2.35< <i>θ</i> <26.12	2.615< <i>θ</i> <30.549	2.22< <i>θ</i> ≤28.28
collected/unique rflns	18790 / 8818	29915 / 5057	38065 / 9430	58653 / 12448	41193 / 5104	17126 / 5881	71238 / 10933	29400 / 14878	44352 / 9749
Completeness to θ (%)	98.2	99.9	99.6	99.3	97.7	99.0	100.0	96.9	99.6
no. of data/restraints/params	8818 / 1 / 397	5057 / 0 / 305	9430 / 18 / 328	12448 / 22 / 691	5104 / 0 / 335	5881 / 2 / 307	10933 / 8 / 697	14878 / 2 / 914	9749 / 2 / 409
Goodness of fit on F^2	1.040	1.028	1.035	1.019	1.040	1.054	1.007	1.373	1.026
Final <i>R</i> indices $(I > $	$R_1 = 0.0307,$	$R_1 = 0.0600,$	$R_1 = 0.0492,$	$R_1 = 0.0378,$	$R_1 = 0.0363,$	$R_1 = 0.0342,$	$R_1 = 0.0360,$	$R_1 = 0.0765,$	$R_1 = 0.0552,$
$2\sigma(I))$	$wR_2 = 0.0718$	$wR_2 = 0.1338$	$wR_2 = 0.1221$	$wR_2 = 0.0807$	$wR_2 = 0.0815$	$wR_2 = 0.0821$	$wR_2 = 0.0655$	$wR_2 = 0.2100$	$wR_2 = 0.1394$
Pindices (all data)	$R_1 = 0.0342,$	$R_1 = 0.0964,$	$R_1 = 0.0588,$	$R_1 = 0.0515,$	$R_1 = 0.0521,$	$R_1 = 0.0386,$	$R_1 = 0.0669,$	$R_1 = 0.0986,$	$R_1 = 0.0746,$
	$wR_2 = 0.0736$	$wR_2 = 0.1478$	$wR_2 = 0.1276$	$wR_2 = 0.0861$	$wR_2 = 0.0875$	$wR_2 = 0.0839$	$wR_2 = 0.0753$	$wR_2 = 0.2214$	$wR_2 = 0.1503$
Largest diff peak/hole (e/Å ³)	1.58/-1.71	0.74/-0.84	2.62/-0.97	1.53/-1.32	1.13/-1.57	2.89/-1.03	1.65/-1.41	1.77/-2.22	1.18/-1.63

Complex		a, Å	b, Å	c, Å	α, °	β, ∘	γ, °	V, Å ³
	Describen	10 (5(9(14)	11 7404(10)	12 2011(15)	01.050(17)	02.27((12)	104 51 ((12)	1494 2(4)
Rh1	Powder	10.6368(14)	11./494(10)	12.2811(15)	91.950(17)	93.376(12)	104.516(12)	1484.2(4)
	Single-crystal	10.5699(2)	11.7403(2)	12.2502(2)	92.2610(10)	93.1600(10)	104.3880(10)	1468.03(4)
Rh2	Powder	9.6386(15)	23.717(2)	12.1228(15)	90	100.082(11)	90	2728.7(5)
	Single-crystal	10.0427(11)	23.901(2)	12.1579(12)	90	100.002(4)	90	2873.9(5)
Rh3	Powder	10.1895(18)	12.9099(17)	13.1533(19)	70.741(10)	73.636(11)	68.389(10)	1493.1(7)
	Single-crystal	11.4135(4)	11.8344(4)	13.4479(5)	70.7650(10)	72.2520(10)	67.1520(10)	1547.45(10)
Rh4	Powder	14.8575(19)	20.3343(17)	17.9261(12)	90	112.242(6)	90	5012.6(3)
	Single-crystal	15.4022(5)	20.3286(6)	17.4956(6)	90	112.9990(10)	90	5042.5(3)
Ir1	Powder	10.9515(15)	11.2465(12)	12.4657(19)	94.258(12)	91.934(14)	103.479(9)	1484.3(6)
	Single-crystal	10.8400(7)	11.6907(8)	12.3687(9)	94.632(2)	92.666(2)	102.807(2)	1520.11(18)
Ir2	Powder	10.305(3)	24.832(5)	12.097(3)	90	103.642(16)	90	3000.4(12)
	Single-crystal	10.1004(5)	23.8644(13)	12.1714(6)	90	100.722(2)	90	2882.6(3)
Ir3	Powder	11.195(3)	12.413(3)	13.387(3)	69.299(16)	75.706(16)	67.340(12)	1592.5(13)
	Single-crystal	11.4446(6)	11.7077(6)	13.0847(7)	71.158(2)	75.027(2)	67.214(2)	1511.82(14)
Ir4	Powder	15.4621(11)	20.1555(14)	17.8598(14)	90	113.436(7)	90	5102.9(7)
	Single-crystal	15.3589(12)	20.2331(16)	17.6076(15)	90	113.797(2)	90	5006.5(7)

Table S3. Unit cell parameters for Rh1 - Ir4 based on single-crystal and powder X-ray data.

Figure S28. Experimental (black) and simulated (red) X-ray powder diffraction patterns of Rh1.

Figure S29. Experimental (black) and simulated (red) X-ray powder diffraction patterns of Rh2.

Figure S30. Experimental (black) and simulated (red) X-ray powder diffraction patterns of Rh3.

Figure S31. Experimental (black) and simulated (red) X-ray powder diffraction patterns of Rh4.

Figure S32. Experimental (black) and simulated (red) X-ray powder diffraction patterns of Ir1.

Figure S33. Experimental (black) and simulated (red) X-ray powder diffraction patterns of Ir2.

Figure S34. Experimental (black) and simulated (red) X-ray powder diffraction patterns of Ir3.

Figure S35. Experimental (black) and simulated (red) X-ray powder diffraction patterns of Ir4.

Figure S36. Molecular structures of Ir2, Ir3, Ir4. Displacement ellipsoids are drawn at 50% probability level.

Figure S37. π - π interactions in complexes **Ir2**, **Ir3**, **Ir4**. Centroid-centroid distances are presented in Å.

4. Spectroscopic study

Figure S38. Luminescence photographs of Rh1 – Rh4 and Ir1 – Ir4 in CH₃CN/H₂O (1/3) solution at 298 K ($\lambda_{ex} = 365$ nm).

Figure S39. Luminescence decay of Rh3 – Rh4 in solid state at 298 K (λ_{ex} = 379 nm).

Figure S40. Luminescence decay of Rh3 – Rh4 in CH₃CN/H₂O (1/3) solution at 298 K ($\lambda_{ex} = 379$ nm).

Figure S41. Luminescence decay of Ir3 – Ir4 in solid state at 298 K (λ_{ex} = 379 nm).

Figure S42. Luminescence decay of Ir3 – Ir4 in CH₃CN/H₂O (1/3) solution at 298 K (λ_{ex} = 379 nm).

Figure S44. Absorption spectra of **Rh3** – **Rh4** and **Ir3** – **Ir4** in CH₃CN upon increasing the volume ratio of water from 1:1 to 1:9.

Figure S45. Absorption spectra of Rh3 - Rh4 and Ir3 - Ir4 in CH_3CN (black) and CH_2Cl_2

(red).

Figure S46. Luminescence spectra of Ir3 – Ir4 in CH₃CN (black) and CH₂Cl₂ (red).

Figure S47. Luminescence spectra of Rh1 – Rh4 decomposed into their Gaussian components.

5. Computational details

Density functional theory (DFT) calculations were performed with Firefly QC package [9], which is partially based on the GAMESS (US) [10] source code, using the B3LYP functional [11], Stuttgart-Dresden effective core potentials (ECP) for iridium and rhodium and def2-svp basis sets for all other atoms [12, 13]. Frequency analysis was carried out to check if optimized structures were local minima. No imaginary frequencies were found for local minima. Time-dependent DFT (TDDFT) calculations were carried out at the ground state geometries to obtain vertical excitation energies and theoretical absorption spectra. The lowest 30 singlet-singlet excitations were computed. Triplet geometries were calculated using the unrestricted B3LYP method (UB3LYP). Then, single point calculations were performed at the optimized triplet geometry with spin multiplicity 1. The emission energies were calculated by the difference $E(T_1) - E(S_0$ in the geometry of T_1). TDDFT calculations on the optimized triplet geometry with spin multiplicity 1 were performed to obtain energies of the T_2 states. This methodology is proved to provide good estimates of emission energies and emission orbital characteristics [14-16].

	Rh1	Rh2	Rh3	Rh4	Ir1	Ir2	Ir3	Ir4
M - C1	1.9919	1.9928	1.9905	1.9904	2.0050	2.0056	2.0040	2.0040
M - C2	1.9938	1.9936	1.9906	1.9909	2.0059	2.0053	2.0039	2.0040
M - N1	2.0567	2.0545	2.0575	2.0560	2.0552	2.0552	2.0565	2.0555
M - N2	2.0548	2.0558	2.0562	2.0572	2.0547	2.0546	2.0566	2.0565
M – O1	2.1776	2.1806	2.1812	2.2021	2.1621	2.1687	2.1791	2.1833
M – O2	2.1746	2.1785	2.1992	2.1841	2.1629	2.1661	2.1668	2.1690

Table S4. Selected bond lengths in optimized structures of Rh1 – Ir4 at the ground state.

Table S5. Composition (%) of frontier molecular orbitals for Rh1 – Ir4.

complex		Rh1	Rh2	Rh3	Rh4	Ir1	Ir2	Ir3	Ir4
	М	60	61	59	52	60	61	59	52
номо	рру	32	32	35	42	33	32	35	41
	0^0	8	7	6	6	7	7	6	7
	energy, eV	-5.37	-5.34	-5.52	-5.52	-4.98	-4.96	-5.15	-5.15
LUMO	М	2	4	2	3	4	3	4	5
	рру	15	95	14	12	13	45	14	12
	0^0	83	1	84	85	83	52	82	83
	energy, eV	-1.65	-1.56	-1.82	-1.92	-1.81	-1.56	-2.00	-2.09

Figure S49. Experimental and TDDFT electronic spectra of Ir1 – Ir4.

Complex	State	$\lambda / nm(f)$	Dominant monoexcitations
	S1	410 (0.021)	$ \begin{array}{l} \mathrm{H} \rightarrow \mathrm{L} \ (54\%) \ \{d(Rh) \rightarrow \pi^*(O^{\diamond}O), \ \pi(ppy) \rightarrow \pi^*(O^{\diamond}O)\} \\ \mathrm{H} \rightarrow \mathrm{L}^{+1} \ (42\%) \ \{d(Rh) \rightarrow \pi^*(ppy), \ \pi(ppy) \rightarrow \pi^*(ppy)\} \end{array} $
	S2	408 (0.018)	$\begin{split} \mathrm{H} &\rightarrow \mathrm{L}{+1} \ (51\%) \ \{d(Rh) &\rightarrow \pi^*(ppy), \ \pi(ppy) \rightarrow \pi^*(ppy)\} \\ \mathrm{H} &\rightarrow \mathrm{L} \ (44\%) \ \{d(Rh) \rightarrow \pi^*(O^{\wedge}O), \ \pi(ppy) \rightarrow \pi^*(O^{\wedge}O)\} \end{split}$
Rh1	S4	377 (0.011)	H-1 → L+1 (66%) { $d(Rh) \to \pi^*(ppy), \pi(O^{\wedge}O) \to \pi^*(ppy)$ } H-1 → L+2 (26%) { $d(Rh) \to \pi^*(ppy), \pi(O^{\wedge}O) \to \pi^*(ppy)$ }
	S5	374 (0.025)	$ \begin{array}{l} \text{H-1} \rightarrow \text{L+2 (48\%) } \{ d(Rh) \rightarrow \pi^*(ppy), \ \pi(O^{\wedge}O) \rightarrow \pi^*(ppy) \} \\ \text{H-1} \rightarrow \text{L+1 (25\%) } \{ d(Rh) \rightarrow \pi^*(ppy), \ \pi(O^{\wedge}O) \rightarrow \pi^*(ppy) \} \\ \text{H-1} \rightarrow \text{L (22\%) } \{ d(Rh) \rightarrow \pi^*(O^{\wedge}O), \ \pi(O^{\wedge}O) \rightarrow \pi^*(O^{\wedge}O) \} \end{array} $
	S6	366 (0.121)	H-1 → L (69%) { $d(Rh) \to \pi^*(O^{\wedge}O), \pi(O^{\wedge}O) \to \pi^*(O^{\wedge}O)$ } H-1 → L+2 (21%) { $d(Rh) \to \pi^*(ppy), \pi(O^{\wedge}O) \to \pi^*(ppy)$ }
	S1	411 (0.037)	$\mathrm{H} \to \mathrm{L} (94\%) \{ d(Rh) \to \pi^*(ppy), \pi(ppy) \to \pi^*(ppy) \}$
	S4	376 (0.008)	H-1 → L (38%) { $d(Rh) \to \pi^*(ppy), \pi(O^{\wedge}O) \to \pi^*(ppy)$ } H-1 → L+1 (31%) { $d(Rh) \to \pi^*(ppy), \pi(O^{\wedge}O) \to \pi^*(ppy)$ } H → L+2 (27%) { $d(Rh) \to \pi^*(O^{\wedge}O), \pi(ppy) \to \pi^*(O^{\wedge}O)$ }
Rh2	S5	375 (0.007)	H-1 → L+1 (58%) { $d(Rh) \to \pi^*(ppy), \pi(O^{\wedge}O) \to \pi^*(ppy)$ } H-1 → L (36%) { $d(Rh) \to \pi^*(ppy), \pi(O^{\wedge}O) \to \pi^*(ppy)$ }
	S6	351 (0.017)	$\mathrm{H} \rightarrow \mathrm{L+3} \ (96\%) \ \{d(Rh) \rightarrow \pi^*(ppy), \ \pi(ppy) \rightarrow \pi^*(ppy)\}$
	S8	339 (0.083)	H-1 → L+2 (86%) { $d(Rh) \to \pi^*(O^{\wedge}O), \pi(O^{\wedge}O) \to \pi^*(O^{\wedge}O)$ }
	S1	415 (0.003)	$\mathrm{H} \to \mathrm{L} \ (96\%) \ \{ d(Rh) \to \pi^*(O^{\wedge}O), \ \pi(ppy) \to \pi^*(O^{\wedge}O) \}$
	S2	404 (0.036)	$\mathrm{H} \rightarrow \mathrm{L+1} \ (90\%) \ \{d(Rh) \rightarrow \pi^*(ppy), \ \pi(ppy) \rightarrow \pi^*(ppy)\}$
	S3	396 (0.003)	$\mathrm{H} \rightarrow \mathrm{L}{+2} \ (93\%) \ \{d(Rh) \rightarrow \pi^*(ppy), \ \pi(ppy) \rightarrow \pi^*(ppy)\}$
Rh3	S4	355 (0.022)	H-1 → L+1 (50%) { $d(Rh) \to \pi^*(ppy), \pi(O^{\wedge}O) \to \pi^*(ppy)$ } H-1 → L+2 (26%) { $d(Rh) \to \pi^*(ppy), \pi(O^{\wedge}O) \to \pi^*(ppy)$ } H-1 → L (15%) { $d(Rh) \to \pi^*(O^{\wedge}O), \pi(O^{\wedge}O) \to \pi^*(O^{\wedge}O)$ }
	S5	354 (0.041)	H-1 → L (57%) { $d(Rh) \to \pi^*(O^{\wedge}O), \pi(O^{\wedge}O) \to \pi^*(O^{\wedge}O)$ } H-1 → L+1 (30%) { $d(Rh) \to \pi^*(ppy), \pi(O^{\wedge}O) \to \pi^*(ppy)$ }
	S1	425 (0.0015)	$\mathrm{H} \to \mathrm{L} (98\%) \{ d(Rh) \to \pi^*(O^{\wedge}O), \pi(ppy) \to \pi^*(O^{\wedge}O) \}$
	S2	404 (0.037)	$\mathrm{H} \rightarrow \mathrm{L+1} \ (93\%) \ \{d(Rh) \rightarrow \pi^*(ppy), \ \pi(ppy) \rightarrow \pi^*(ppy)\}$
Rh4	S4	363 (0.065)	$\text{H-1} \to \text{L} (87\%) \{ d(Rh) \to \pi^*(O^{\wedge}O), \pi(O^{\wedge}O) \to \pi^*(O^{\wedge}O) \}$
	S7	345 (0.022)	$\mathrm{H} \rightarrow \mathrm{L+3} \ (93\%) \ \{d(Rh) \rightarrow \pi^*(ppy), \ \pi(ppy) \rightarrow \pi^*(ppy)\}$
	S10	330 (0.122)	H-3 → L (73%) { $d(Rh) \to \pi^*(O^{\circ}O), \pi(ppy) \to \pi^*(O^{\circ}O)$ } H-2 → L (5%) { $\pi(ppy) \to \pi^*(O^{\circ}O)$ }

Table S6. TDDFT singlet excited states for Rh1 – Rh4.

	S1	500 (0.003)	$H \to L (99\%) \{ d(Ir) \to \pi^*(O^{\wedge}O), \pi(ppy) \to \pi^*(O^{\wedge}O) \}$
	S2	462 (0.032)	$\mathrm{H} \rightarrow \mathrm{L+1} \ (95\%) \ \{d(Ir) \rightarrow \pi^*(ppy), \ \pi(ppy) \rightarrow \pi^*(ppy)\}$
I1	S4	414 (0.044)	H-1 → L (95%) { $d(Ir) \to \pi^*(O^{\wedge}O), \pi(O^{\wedge}O) \to \pi^*(O^{\wedge}O)$ }
Irl	S7	386 (0.032)	H → L+3 (67%) { $d(Ir) \to \pi^*(ppy), \pi(ppy) \to \pi^*(ppy)$ } H-1 → L+2 (27%) {{ $d(Ir) \to \pi^*(ppy), \pi(O^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$
	S9	367 (0.104)	H-2 → L (89%) { $d(Ir) \to \pi^*(O^{\wedge}O)$ } H-2 → L+2 (8%) { $d(Ir) \to \pi^*(ppy)$ }
	S1	465 (0.031)	$ \begin{array}{l} \mathrm{H} \rightarrow \mathrm{L+1} \ (80\%) \ \{d(Ir) \rightarrow \pi^*(ppy), \ \pi(ppy) \rightarrow \pi^*(ppy)\} \\ \mathrm{H} \rightarrow \mathrm{L} \ (17\%) \ \{d(Ir) \rightarrow \pi^*(O^{\wedge}O), \ \pi(ppy) \rightarrow \pi^*(O^{\wedge}O)\} \end{array} $
	S4	394 (0.022)	$ \begin{array}{l} \text{H-1} \rightarrow \text{L} \ (63\%) \ \{d(Ir) \rightarrow \pi^{*}(ppy), \ \pi(O^{\wedge}O) \rightarrow \pi^{*}(O^{\wedge}O)\} \\ \text{H-1} \rightarrow \text{L+2} \ (18\%) \ \{d(Ir) \rightarrow \pi^{*}(ppy), \ \pi(O^{\wedge}O) \rightarrow \pi^{*}(O^{\wedge}O)\} \\ \text{H} \rightarrow \text{L+3} \ (14\%) \ \{d(Ir) \rightarrow \pi^{*}(ppy), \ \pi(ppy) \rightarrow \pi^{*}(ppy)\} \end{array} $
Ir2	S6	388 (0.032)	$ \begin{split} & H \to L+3 \ (70\%) \ \{d(Ir) \to \pi^*(ppy), \ \pi(ppy) \to \pi^*(ppy)\} \\ & H-1 \to L+1 \ (12\%) \ \{d(Ir) \to \pi^*(ppy), \ \pi(O^{\wedge}O) \to \pi^*(ppy)\} \\ & H-1 \to L \ (8\%) \ \{d(Ir) \to \pi^*(ppy), \ \pi(O^{\wedge}O) \to \pi^*(O^{\wedge}O)\} \end{split} $
	S9	352 (0.048)	H-2 → L (84%) { $d(Ir) \to \pi^*(ppy), d(Ir) \to \pi^*(O^{\wedge}O)$ } H-2 → L+2 (6%) { $d(Ir) \to \pi^*(ppy), d(Ir) \to \pi^*(O^{\wedge}O)$ }
	S10	351 (0.070)	H-2 → L+1 (86%) { $d(Ir) \to \pi^*(ppy)$ } H-1 → L+2 (6%) { $d(Ir) \to \pi^*(ppy), \pi(O^{\wedge}O) \to \pi^*(O^{\wedge}O)$ }
	S1	511 (0.003)	$\mathrm{H} \to \mathrm{L} (99\%) \{ d(Ir) \to \pi^*(O^{\wedge}O), \pi(ppy) \to \pi^*(O^{\wedge}O) \}$
	S2	455 (0.031)	$\mathrm{H} \rightarrow \mathrm{L+1} \ (91\%) \ \{ d(Ir) \rightarrow \pi^*(ppy), \ \pi(ppy) \rightarrow \pi^*(ppy) \}$
	S4	412 (0.017)	H-1 \rightarrow L (96%) { $d(Ir) \rightarrow \pi^*(O^{\wedge}O), \pi(O^{\wedge}O) \rightarrow \pi^*(O^{\wedge}O)$ }
Ir3	S8	368 (0.072)	$\begin{array}{l} \mathrm{H-2} \rightarrow \mathrm{L} \; (48\%) \; \{ d(Ir) \rightarrow \pi^*(O^{\wedge}O) \} \\ \mathrm{H} \rightarrow \mathrm{L+4} \; (43\%) \; \{ d(Ir) \rightarrow \pi^*(ppy), \; \pi(ppy) \rightarrow \pi^*(ppy) \} \end{array}$
	S9	365 (0.034)	$ \begin{array}{c} \text{H-2} \to \text{L} (37\%) \{ d(Ir) \to \pi^*(O^{\wedge}O) \} \\ \text{H} \to \text{L+4} (21\%) \{ d(Ir) \to \pi^*(ppy), \pi(ppy) \to \pi^*(ppy) \} \\ \text{H-1} \to \text{L+2} (14\%) \{ d(Ir) \to \pi^*(ppy), \pi(O^{\wedge}O) \to \pi^*(ppy) \} \\ \text{H-1} \to \text{L+1} (12\%) \{ d(Ir) \to \pi^*(ppy), \pi(O^{\wedge}O) \to \pi^*(ppy) \} \\ \text{H-2} \to \text{L+2} (12\%) \{ d(Ir) \to \pi^*(ppy) \} \end{array} $
	S1	526 (0.003)	$H \to L (98\%) \{ d(Ir) \to \pi^*(O^{\wedge}O), \pi(ppy) \to \pi^*(O^{\wedge}O) \}$
	S2	454 (0.032)	$\mathrm{H} \rightarrow \mathrm{L+1} \ (93\%) \ \{ d(Ir) \rightarrow \pi^*(ppy), \ \pi(ppy) \rightarrow \pi^*(ppy) \}$
	S6	379 (0.123)	H-2 → L (67%) { $d(Ir) \to \pi^*(O^{\wedge}O)$ } H-1 → L+1 (24%) { $d(Ir) \to \pi^*(ppy), \pi(O^{\wedge}O) \to \pi^*(ppy)$ }
Ir4	S7	376 (0.049)	$ \begin{array}{l} \text{H-1} \rightarrow \text{L+1} \ (34\%) \ \{d(Ir) \rightarrow \pi^{*}(ppy), \ \pi(O^{\wedge}O) \rightarrow \pi^{*}(ppy)\} \\ \text{H-1} \rightarrow \text{L+2} \ (33\%) \ \{d(Ir) \rightarrow \pi^{*}(ppy), \ \pi(O^{\wedge}O) \rightarrow \pi^{*}(ppy)\} \\ \text{H-2} \rightarrow \text{L} \ (16\%) \ \{d(Ir) \rightarrow \pi^{*}(O^{\wedge}O)\} \\ \text{H} \rightarrow \text{L+3} \ (6\%) \ \{d(Ir) \rightarrow \pi^{*}(ppy), \ \pi(ppy) \rightarrow \pi^{*}(ppy)\} \\ \text{H-2} \rightarrow \text{L+1} \ (6\%) \ \{d(Ir) \rightarrow \pi^{*}(ppy)\} \\ \end{array} $
	S11	345 (0.077)	H-2 \rightarrow L+1 (64%) { $d(Ir) \rightarrow \pi^{*}(ppy)$ } H-2 \rightarrow L+2 (20%) { $d(Ir) \rightarrow \pi^{*}(ppy)$ } H-1 \rightarrow L+2 (9%) { $d(Ir) \rightarrow \pi^{*}(ppv), \pi(O^{*}O) \rightarrow \pi^{*}(ppv)$ }

complex		Rh1	Rh2	Rh3	Rh4	Ir1	Ir2	Ir3	Ir4
	М	3	7	11	10	16	18	19	20
moiety	0^0	96	92	88	89	71	68	64	61
	C^N	1	1	1	1	13	14	17	19

Table S8. Spin density distribution (%) for complexes Rh1 - Rh4, Ir1 - Ir4 at their T_1 states.

Table S9. Experimental and calculated emission wavelength for complexes $\mathbf{Rh1} - \mathbf{Rh4}$ from the triplet excited state (calculated as l=hc/DE, where DE is $E(T_1)-E(S_0 \text{ in } T_1 \text{ geometry})$ or $E(T_2)-E(S_0 \text{ in } T_1 \text{ geometry})$).

、 ·	-	0	• //		
complex	λ_{exp}	, nm	$\lambda_{\text{theor}}, \text{nm}$		
Rh1	555	619	457	566	
Rh2	552	610	482	566	
Rh3	567	628	550	602	
Rh4	555	618	544	589	

Figure S50. Spin density distribution (SDD) of the lowest triplet excited states (T_1) in complexes Ir1 – Ir4.

References:

- 1. M. S. Wrighton, D. S. Ginley and D. L. Morse, J. Phys. Chem., 1974, 78, 2229–2233.
- 2. J. C. De Mello, H. F. Wittmann and R. H. Friend, Adv. Mater., 1997, 9, 230-232.
- 3. N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes and R. H. Friend, Chem. Phys. Lett., 1995, 241, 89–96.
- 4. G.M. Sheldrick, SADABS. Version 2008/1. 2008. Bruker AXS Inc. Germany.
- 5. G.M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
- 6. G.M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
- 7. A.L. Spek, Acta Cryst. 2015, C71, 9-18.
- 8. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339–341.
- 9. A.A. Granovsky, Firefly version 7.1.G. http://classic.chem.msu.su/gran/firefly/index.html
- M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupius, J.A. Montgomery, J. Comput.Chem., 1993, 14, 1347.
- 11. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem., 1994, 98, 11623.
- 12. D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta., 1990, 77, 123.
- 13. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys., 1980, 72, 650.
- 14. F. D.Angelis, S. Fantacci, N.Evans, C.Klein, S. M.Zakeeruddin, J. E.Moser, K.Kalyana-
- sundaram, H. J.Bolink, M.Grätzel, M. K.Nazeeruddin, Inorg. Chem. 2007, 46, 5989-6001.

15. P. J. Hay, J. Phys. Chem. A, 2002,106, 8, 1634–1641.

16. S. Urinda, G. Das, A. Pramanik, P. Sarkar, Phys. Chem. Chem. Phys., 2017, 19, 43, 29629–29640.