Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

for

Tuning Electronic Structure for Enhanced Photocatalytic Efficiency:

Theoretical and Experimental Investigation of

CuM_{1-x}M'_xO₂ (M, M'=B, Al, Ga, In) Solid Solutions

Xian-Lan Chen^{1,3,#}, Bao-Feng Shan^{1,#}, Zong-Yan Zhao^{1,*} Jin Zhang,² Qing-Ju Liu,^{2,*}

¹ Faculty of Materials Science and Engineering, Kunming University of Science and Technology,

Kunming 650093, P. R. China

² Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, 650091 Kunming, P. R. China

³ School of Chemistry and Resources Engineering, Honghe University, Mengzi 661199, P. R.

China

The authors contribute equally.

* Corresponding author, E-mail: zzy@kust.edu.cn, qjliu@ynu.edu.cn

Thermodynamic stability

To schematize the thermodynamic solubility limit of $\text{CuM}_{1-x}\text{M}'_x\text{O}_2$, we compared their enthalpy of mixing (ΔH_{mix}) and the configurational entropy (ΔS_{mix}), ΔH_{mix} is defined as:

 $\Delta H_{mix}[CuM_{1-x}M'_{x}O_{2}] = E(CuM_{1-x}M'_{x}O_{2})-xE(CuM'O_{2})-(1-x)E(CuMO_{2})$

where $E(CuM_{1-x}M'_{x}O_{2})$ is the total energy of $CuM_{1-x}M'_{x}O_{2}$ and $E(CuM'O_{2})$ and $E(CuMO_{2})$ are the total energies of ground states of $CuM'O_{2}$ and $CuMO_{2}$.

 ΔH_{mix} of CuAl_{1-x}Ga_xO₂ solid solutions can be reliably represented by a regular solution model, which has a symmetry of x=0.5. To capture the asymmetry of ΔH_{mix} with respect to composition of CuAl_{1-x}B_xO₂ ($0 \le x \le 0.417$), CuGa_{1-x}B_xO₂ ($0 \le x \le 0.167$), CuIn_{1-x}B_xO₂ ($0 \le x \le 0.167$), CuIn_{1-x}B_xO₂ ($0 \le x \le 0.167$), CuAl_{1-x}In_xO₂ and CuGa_{1-x}In_xO₂, a sub-regular solution model was used. The regular solution model and sub-regular solution model can be represented mathematically by the following equation:

$$\Delta H_{\rm mix} = x(1-x) * \Omega(x)$$

 $\Delta H_{mix} = x(1-x)*[\Omega_1(1-x)+\Omega_2 x]$

where x is the molar concentration, Ω is the interaction parameter.

 $\Omega(x,0.0 \text{ K}) = \Delta H_{\text{mix}}(x,0.0 \text{ K})/[x(1-x)]$

The entropy of a solid solution is a sum of the configurational entropy (ΔS_{mix}) and the vibrations entropy. The vibrational entropy is negligible compared to ΔS_{mix} , ΔS_{mix} has a simple functional form.

 $\Delta S_{mix} = -k_B[xlnx+(1-x)ln(1-x)], k_B \text{ is a Boltzmann constant.}$

The stability of solid solution is determined by the Gibbs-free energy of mixing (ΔG_{mix}), which includes not only ΔH_{mix} but also the contribution of ΔS_{mix} and temperature, which is given by:

 $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix} = (1-x)x^* \Omega + k_B T[(1-x)\ln(1-x) + x\ln x]$

where, ΔS_{mix} is positive and $-T\Delta S_{mix}$ is negative, indicating $-T\Delta S_{mix}$ has stabilizing effect. Moreover, from ΔG_{mix} , one obtains the solubility limits for binodal and spinodal decomposition, and the critical temperature as shown in **Figure 2b**.

The calculation of lattice mismatch

The lattice mismatch, $\Delta a/a$, and $\Delta c/c$ between CuMO₂ and CuM'_xO₂, can be calculated by the following equation:

$$\frac{\triangle a}{a} = \frac{|a_{CuMO_2} - a_{CuMO_2}|}{a_{CuMO_2}}$$
$$\frac{\triangle c}{c} = \frac{|c_{CuMO_2} - c_{CuMO_2}|}{c_{CuMO_2}}$$

Figure S1. Average (a) Cu-O, (b) Al-O, (c) B-O, (d) Ga-O and (e) In-O bond lengths of $CuM_{1-x}M'_xO_2$ solid solutions as a function of content x.

Figure S2. The partial radial distribution functions (a, c, e) Cu-Cu and (b, d, f) M-M average nearest neighbor occurrence vs distance for $CuM_{1-x}B_xO_2$ compounds, the corresponding RDF peaks of Cu-Cu and M-M in the nearest interlayer are marked with clubs.

Figure S3. Powder X-ray diffraction and Rietveld plots of $CuAl_{1-x}Ga_xO_2$, $CuGa_{1-x}In_xO_2$ and $CuAl_{1-x}In_xO_2$ samples.

Figure S4. The SEM images and EDS element mappings of (a) $CuAl_{0.5}Ga_{0.5}O_2$, (b) $CuAl_{0.97}In_{0.03}O_2$, (c) $CuGa_{0.9}In_{0.1}O_2$ samples.

Figure S5. Average Hirshfeld charge Cu, O, Al, Ga and In atoms in $CuM_{1-x}M'_{x}O_{2}$ solid solutions.

Figure S6. Projected density of states of $CuAl_{1-x}Ga_xO_2$, $CuGa_{1-x}In_xO_2$ and $CuAl_{1-x}In_xO_2$ solid solutions as a function of content x.

Figure S7. Optical band gaps of $CuAl_{1-x}Ga_xO_2$, $CuGa_{1-x}In_xO_2$ and $CuAl_{1-x}In_xO_2$ samples were estimated by the Tauc plot method.

 $\label{eq:Figure S8.} \begin{array}{l} \mbox{Mott-Schottky plots of CuAl}_{1-x}Ga_xO_2\ (x=0,\ 0.25,\ 0.5,\ 0.75,\ 1),\ CuAl}_{1-x}In_xO_2\ (x=0,\ 0.01,\ 0.03,\ 1)\ and CuGa_{1-x}In_xO_2\ (x=0,\ 0.05,\ 0.1,\ 1)\ in\ aqueous\ Na_2SO_4\ solution. \end{array}$

Figure S9. Band structure and the corresponding density of states of $CuGa_{1-x}In_xO_2$ solid solutions.

	This work	Computational reference value	Experimental value/Å			
	Lattice constants /Å	Lattice constants /Å	Computational method			
CuBO ₂	a=b=2.5117,	$a=b=2.512$, $c=16.504^{29}$	GGA- PBEsol	a=b=2.53, c=16.58 (Pulsed laser deposition technique ³⁵)		
	c=16.5031	$a=b=2.6, c=16.6^{30}$	PBE-GGA			
	a=b=2.8659,	$a=b=2.861, c=16.978^{31}$	WIEN97	a=b=2.8617, c=16.9407 (Hydrothermal method ³⁶)		
CuAlO ₂	c=16.9179	$a=b=2.89, c=17.0^{30}$	PBE-GGA	a=b=2.8730, c=16.9460 (Solid-state reaction ⁴⁰)		
	a=b=2.9864,	$a=b=2.9770, c=17.1710^{32}$	TB-LMTO	a=b=2.9748, c=17.155 (Hydrothermal method ³⁷)		
CuGaO ₂	c=17.1373	$a=b=2.963, c=17.172^{33}$	LAPW	a=b=2.986, $c=17.229$ (Hydrothermal method) ⁴⁹		
				a=b=2.976, $c=17.160$ (Solid-state reaction ³⁸)		
	a=b=3.3488,	a=b=3.34, c=17.5 ³⁰	PBE-GGA	a=b=3.2922, $c=17.388$ (Cation exchange reaction) ³⁹		
CuInO ₂	c=17.3237	$a=b=3.359$, $c=17.529^{34}$	GGA-PBE			
		a=b=3.2920, c=17.3880 ³³	TB-LMTO			

Table S1 The calculated lattice constants of CuBO₂, CuAlO₂, CuGaO₂ and CuInO₂.

Table S2. Rietveld refinement results of XRD pattern for all compositions of CuAl_{1-x}Ga_xO₂, CuGa_{1-x}In_xO₂ and CuAl_{1-x}In_xO₂ samples.

Material	Lattice parameter						
Wateria	a, b (Å)	c (Å)	α, β (°)	γ (°)	V (Å ³)		
CuAlO ₂	2.8578	16.9288	90.0	120.0	119.8725		
$CuAl_{0.75}Ga_{0.25}O_2$	2.8883	16.9688	90.0	120.0	122.5952		
$CuAl_{0.5}Ga_{0.5}O_2$	2.9305	17.0566	90.0	120.0	126.8562		
CuAl _{0.25} Ga _{0.75} O ₂	2.9616	17.1356	90.0	120.0	130.1631		
CuGaO ₂	2.9766	17.1632	90.0	120.0	131.6990		
$CuAl_{0.99}In_{0.01}O_2$	2.8665	16.9384	90.0	120.0	119.6908		
$CuAl_{0.97}In_{0.03}O_2$	2.8783	16.9482	90.0	120.0	119.9165		
CuInO ₂	3.3215	17.4000	90.0	120.0	166.2350		
$CuGa_{0.95}In_{0.05}O_2$	2.9894	17.1701	90.0	120.0	132.9590		
$CuGa_{0.9}In_{0.1}O_2$	2.9923	17.1724	90.0	120.0	133.1642		
$CuGa_{0.85}In_{0.15}O_2$	2.9919	17.1767	90.0	120.0	133.1579		

	Atomic concentration from XPS					
Material	Cu	Al	Ga	In	0	
	(%)	(%)	(%)	(%)	(%)	
CuAl _{0.5} Ga _{0.5} O ₂	26.1	13.2	13.8	0.0	47.3	
CuAl _{0.97} In _{0.03} O ₂	25.7	24.3	0.0	1.1	48.5	
$CuGa_{0.9}In_{0.1}O_2$	21.7	0.0	25.8	2.4	50.1	

Table S3. The atomic percentage of different cations extracted from SEM-EDS for $CuAl_{0.5}Ga_{0.5}O_2$, $CuAl_{0.97}In_{0.03}O_2$ and $CuGa_{0.9}In_{0.1}O_2$ samples.