A complete series of N-heterocyclic tetrylenes (Si – Pb) with a 1,1'-ferrocenediyl

backbone enabled by 1,3,2-diazaborolyl N-substituents[†]

Robin Guthardt,* Hannes L. Jacob, Clemens Bruhn and Ulrich Siemeling*

Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany. *E-mail:* guthardt@uni-kassel.de, siemeling@uni-kassel.de

A – Experimental Section	S2
Crystallographic data	S2
Plots of NMR spectra	S3
B – Computational Details	S15
Frontier orbital discussion	S15
Cartesian coordinates for the optimized structures	S20
C – References	S25

A – Experimental Section

Crystallographic data

Table S1. X-ray crystallographic details.

	1 H ₂	[1 Li ₂ (TMEDA) ₂]·1.5 C ₆ H ₆	1Si⋅C ₆ H ₆	1Ge	1 Sn	1 Pb	1 Si(OH)H
Empirical formula	C ₆₂ H ₈₂ B ₂ FeN ₆	C ₈₃ H ₁₂₁ B ₂ FeLi ₂ N ₁₀	C ₆₈ H ₈₆ B ₂ FeN ₆ Si	C ₆₂ H ₈₀ B ₂ FeGeN ₆	C ₆₂ H ₈₀ B ₂ FeN ₆ Sn	C ₆₂ H ₈₀ B ₂ FeN ₆ Pb	C ₆₂ H ₈₂ B ₂ FeN ₆ OSi
Formula weight	988.80	1349.23	1092.98	1059.38	1105.48	1193.98	1032.89
Crystal system	orthorhombic	triclinic	monoclinic	monoclinic	triclinic	triclinic	monoclinic
Space group	Aea2	<i>P</i> -1	P21/c	P21/c	<i>P</i> -1	<i>P</i> -1	P21/c
a/Å	8.9740(4)	13.5366(7)	20.8000(8)	20.4144(11)	10.6958(3)	10.7135(5)	12.2033(8)
b/Å	29.2515(17)	16.4231(9)	22.0814(6)	21.9544(8)	14.2662(4)	14.3200(7)	23.7917(17)
c/Å	21.3053(9)	19.0854(10)	14.5347(6)	14.6481(7)	20.2598(6)	20.0251(10)	19.6371(12)
a/°	90	94.408(4)	90	90	109.087(2)	108.398(4)	90
β/°	90	108.594(4)	102.468(3)	104.662(4)	100.421(3)	101.468(4)	92.103(5)
γ/°	90	96.918(4)	90	90	94.724(2)	94.946(4)	90
Volume/Å ³	5592.7(5)	3962.1(4)	6518.3(4)	6351.3(5)	2839.77(15)	2820.1(2)	5697.5(7)
Z	4	2	4	4	2	2	4
$ ho_{ m calcd}/ m g~cm^{-3}$	1.174	1.131	1.114	1.108	1.293	1.406	1.204
µ/mm⁻¹	2.485	1.886	2.348	2.704	5.870	3.282	0.332
<i>F(</i> 000)	2128.0	1460.0	2344.0	2248.0	1160.0	1224.0	2216.0
Crystal size/mm ³	0.13 × 0.12 × 0.04	0.10 × 0.09 × 0.09	0.28 × 0.19 × 0.03	0.17 × 0.10 × 0.03	0.24 × 0.11 × 0.02	0.17 × 0.11 × 0.04	0.43 × 0.21 × 0.05
Radiation used	Cu K_{α} (λ = 1.54186 Å)	Cu <i>K</i> _α (<i>λ</i> = 1.54186 Å)	Cu K_{α} (λ = 1.54186 Å)	Cu K_{α} (λ = 1.54186 Å)	Cu K_{α} (λ = 1.54186 Å)	Mo K_{α} (λ = 0.71073 Å)	Mo K_{α} (λ = 0.71073 Å)
2Θ range for data collection/°	6.042 to 140.918	5.462 to 142.496	5.912 to 142.034	6.02 to 137.986	6.634 to 141.846	2.208 to 51.704	2.69 to 52.77
	-7 ≤ h ≤ 10	-14 ≤ h ≤ 16	-25 ≤ h ≤ 24	-24 ≤ h ≤ 24	-7 ≤ h ≤ 12	-12 ≤ h ≤ 13	-15 ≤ h ≤ 14
Index ranges	-33 ≤ k ≤ 35	-16 ≤ k ≤ 20	-25 ≤ k ≤ 13	-26 ≤ k ≤ 19	-16 ≤ k ≤ 17	-17 ≤ k ≤ 17	-27 ≤ k ≤ 29
	-25 ≤ l ≤ 12	-19 ≤ I ≤ 23	-17 ≤ l ≤ 16	-17 ≤ ≤ 11	-24 ≤ I ≤ 21	-24 ≤ I ≤ 24	-24 ≤ l ≤ 24
Refl. collected	10412	34905	27165	23235	22454	19459	25310
Independent refl.	3424 [<i>R</i> _{int} = 0.0902]	14695 [<i>R</i> _{int} = 0.0432]	11825 [<i>R</i> _{int} = 0.0533]	11270 [<i>R</i> _{int} = 0.0870]	10527 [<i>R</i> _{int} = 0.0308]	10646 [<i>R</i> _{int} = 0.0605]	11500 [<i>R</i> _{int} = 0.0687]
Data/restr./param.	3424/1/330	14695/57/974	11825/0/719	11270/0/665	10527/0/665	10646/0/666	11500/0/693
Goodness-of-fit on F ²	1.055	1.021	1.025	1.035	1.035	1.093	1.020
Final <i>R</i> indexes	$R_1 = 0.0738$	$R_1 = 0.0549$	$R_1 = 0.0650$	$R_1 = 0.0748$	$R_1 = 0.0407$	$R_1 = 0.0551$	$R_1 = 0.0850$
$[l > 2\sigma(l)]$	$wR_2 = 0.1533$	$wR_2 = 0.1093$	$wR_2 = 0.1446$	$wR_2 = 0.1752$	$wR_2 = 0.1039$	$wR_2 = 0.1463$	$wR_2 = 0.2209$
Final <i>R</i> indexes	$R_1 = 0.1146$	$R_1 = 0.0930$	$R_1 = 0.1112$	$R_1 = 0.1347$	$R_1 = 0.0491$	$R_1 = 0.0654$	$R_1 = 0.1209$
[all data]	$wR_2 = 0.1736$	$wR_2 = 0.1273$	$wR_2 = 0.1667$	<i>wR</i> ₂ = 0.2146	$wR_2 = 0.1098$	$wR_2 = 0.1575$	$wR_2 = 0.2537$
Largest diff. peak/hole / e Å ⁻³	0.76/-0.34	0.72/-0.61	0.70/-0.55	0.72/-0.83	1.05/-1.11	1.67/-2.38	1.28/-0.82
Flack parameter	0.362(15)						
CCDC No.	2289080	2289081	2289082	2289083	2289084	2289085	2289086

Figure S2: ${}^{13}C{}^{1}H$ NMR (C₆D₆, 100 MHz) of 1H₂. The signal marked (*) belongs to silicon grease.

-20.2

-0.02

Figure S6: 1 H NMR (C₆D₆, 500 MHz) of 1Si.

Figure S12: ¹¹B NMR (C₆D₆, 160 MHz) of 1Si(OH)H.

---42.0

Figure S15: ¹H NMR (C₆D₆, 400 MHz) of 1Ge. The signal marked (*) belongs to trace amounts of *n*-hexane.

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 ppm

Figure S16: ¹³C NMR (C₆D₆, 100 MHz) of 1Ge. The signals marked (*) belong to trace amounts of *n*-hexane.

-24.2

Figure S18: ¹H NMR (C₆D₆, 400 MHz) of 1Sn. The signal marked (*) belongs to trace amounts of toluene.

900 700 500 300 100 -100 -300 -500 -700 -900 -1100 -1300 -1500 -1700 -1900 ppm

Figure S20: ¹¹⁹Sn NMR (C₆D₆, 186 MHz) of 1Sn.

-25.7

Figure S22: ¹H NMR (C₆D₆, 400 MHz) of 1Pb. The signal marked (*) belongs to trace amounts of toluene.

29.8

Figure S25: ¹¹B NMR (C₆D₆, 160 MHz) of **1**Pb.

B – Computational Details

The geometries of **1**Si, fc[(NDipp)₂Si] and fc[(NBMe₂)₂Si] were optimised with the ORCA program package (Version 5.0.3)^{S1} employing the PBEh-3c^{S2} method and checked for imaginary frequencies to confirm the geometries as minima on the energy hypersurface. Single-point calculations with further methods were performed with Gaussian09^{S3} employing the functionals B3LYP,^{S4} M06-L^{S5} and ω B97XD^{S6} in combination with the def2-TZVP^{S7} basis set with Grimme's dispersion correction (D3) and Becke-Johnson damping.^{S8} Pictures were generated with the ChemCraft program.^{S9}

Frontier orbital discussion

As previously reported^{S10} it is becoming commonplace to tentatively correlate the energy difference $\Delta E_{LP/LUMO}$ of assigned lone pair orbital (LP) and vacant orbital (LUMO) of a silylene with its reactivity, which, however, cannot be particularly reliable due to the method dependence of the energies. We find a higher $\Delta E_{LP/LUMO}$ for **1**Si in comparison to fc[(NDipp)₂Si] for each method, as is illustrated in Table S1.^{S10} For the optimised model compound fc[(NBMe₂)₂Si] the orbitals are shown in Table S2.

Table S2. Frontier molecular orbitals of **1**Si obtained from calculations with different methods (PBEh-3c, B3LYP/def2-TZVP, M06-L/def2-TZVP and ω B97XD/def2-TZVP; H atoms not shown, energies in eV, surfaces at 0.05 a^{-3/2}. Values used to calculate $\Delta E_{LP/LUMO}$ are highlighted in red. For each method $\Delta E_{LP/LUMO}$, E_{LP} and E_{LUMO} of **1**Si are compared with the corresponding values of fc[(NDipp)₂Si].^{S10}

Table S3. Frontier molecular orbitals of fc[(BMe₂)₂Si] calculated with PBEh-3c (H atoms not shown, energies in eV, energy surfaces with $0.5 a_0^{-3/2}$). LUMO and lone pair energies are highlighted in red.

 $\Delta E_{\text{LP/LUMO}}$

6.036

Cartesian coordinates for the optimized structures

1Si:			
Fe	0.002095000	0.001917000	-3.029978000
Si	-0.000105000	0.001751000	0.672462000
Ν	-1.419526000	0.090573000	-0.342996000
Ν	-3.092207000	0.970687000	1.448369000
Ν	-3.598551000	-1.035470000	0.514154000
Ν	1.420321000	-0.087324000	-0.341354000
Ν	3.598326000	1.037033000	0.520680000
Ν	3.091932000	-0.972161000	1.448600000
С	-1.546375000	0.127681000	-1.750380000
С	-1.481825000	1.309713000	-2.541300000
Н	-1.323474000	2.307459000	-2.158399000
С	-1.608220000	0.938468000	-3.902237000
Н	-1.582809000	1.612084000	-4.745971000
С	-1.770738000	-0.469087000	-3.958194000
Н	-1.897157000	-1.060627000	-4.852708000
С	-1.738560000	-0.972054000	-2.634867000
Н	-1.839156000	-2.008144000	-2.348229000
С	1.548969000	-0.124274000	-1.748544000
С	1.743132000	0.974896000	-2.633389000
Н	1.845035000	2.011136000	-2.347858000
С	1.776499000	0.471003000	-3.956347000
Н	1.904594000	1.061868000	-4.851071000
С	1.612625000	-0.936353000	-3.899831000
Н	1.587481000	-1.610395000	-4.743232000
С	1.484367000	-1.306575000	-2.538856000
Н	1.323592000	-2.303516000	-2.154916000
С	-4.536705000	-0.735858000	1.494193000
Н	-5.351068000	-1.404501000	1.721358000
С	-4.234679000	0.448220000	2.051451000
Н	-4.749858000	0.975730000	2.837557000
С	-2.725649000	2.318568000	1.701483000
С	-3.171295000	3.316987000	0.816602000
С	-2.922969000	4.644552000	1.144754000

Н	-3.257536000	5.433726000	0.484857000
С	-2.262250000	4.982291000	2.312890000
Н	-2.091464000	6.022378000	2.558655000
С	-1.808738000	3.988192000	3.157113000
Н	-1.286027000	4.266119000	4.063508000
C	-2.01/100000	2.642044000	2.865567000
C	-3.956060000	2.989143000	-0.438072000
Н	-3.638615000	2.010662000	-0.804953000
C	-5.453648000	2.902064000	-0.133694000
н	-5.668578000	2.159702000	0.633344000
н	-6.009531000	2.619737000	-1.030391000
Н	-5.837098000	3.865067000	0.208933000
C	-3.716315000	3.976176000	-1.578674000
н	-4.193228000	4.941531000	-1.398863000
п	-4.135519000	3.577591000	-2.503150000
П	-2.004378000	4.100/80000	-1.747773000
	-1.494229000	1.589683000	3.819081000
	-1.310102000	0.02000000	5.307214000
	-2.374300000	1.400/01000	5.005400000
	-2.333690000	2.414172000	5.044444000
	-2.027104000	1.000717000	3.7 10200000
	-3.412509000	1.277103000	4.010000000
L L	-0.030007000	1.00020000	4.202974000
ц	0.000307000	1.092003000	1 835067000
ц	0.030000000	2 776067000	4.055907000
\hat{c}	-3 783167000	-2 128310000	-0.366470000
č	-4 738002000	-2.008576000	-1 387850000
č	-4 921727000	-3.086212000	-2 244805000
н	-5 652372000	-3 016853000	-3 041099000
Ċ	-4 180797000	-4 246646000	-2 103007000
н	-4 339980000	-5 077350000	-2 778527000
Ċ	-3 233007000	-4 340123000	-1 100302000
н	-2 651050000	-5 248986000	-1 003199000
C	-3 011174000	-3 285535000	-0 219327000
č	-5.561074000	-0.751687000	-1.582578000
Ĥ	-5.187685000	0.016148000	-0.904053000
С	-5.426888000	-0.189719000	-2.997122000
Н	-4.387763000	0.033142000	-3.238547000
Н	-6.001147000	0.734878000	-3.085882000
Н	-5.810084000	-0.877833000	-3.752787000
С	-7.025873000	-0.997168000	-1.221644000
Н	-7.482013000	-1.745777000	-1.872447000
Н	-7.605292000	-0.077173000	-1.318689000
Н	-7.129662000	-1.346461000	-0.193797000
С	-1.927581000	-3.411656000	0.826945000
Н	-1.849485000	-2.460358000	1.356175000
С	-2.264644000	-4.477526000	1.867519000
Н	-3.214158000	-4.265999000	2.359483000
Н	-1.487778000	-4.517393000	2.633542000
Н	-2.335254000	-5.470005000	1.417818000
С	-0.574139000	-3.694882000	0.175513000
Н	-0.549828000	-4.684961000	-0.283707000
Н	0.227304000	-3.655597000	0.910563000
Н	-0.350942000	-2.966834000	-0.604742000
C	4.536353000	0.734353000	1.499928000
Н	5.350670000	1.402249000	1.729467000
C	4.234251000	-0.451430000	2.053509000
Н	4.749153000	-0.981270000	2.838226000
C	3.784086000	2.131380000	-0.35/95/000
C	3.012451000	3.208/11000	-0.209751000
C	3.234943000	4.344376000	-1.089313000

Н	2.653015000	5.253208000	-0.991303000
С	4.183479000	4.252176000	-2.091362000
Н	4.343281000	5.083720000	-2.765703000
С	4.924537000	3.091884000	-2.233917000
Н	5.655929000	3.023623000	-3.029616000
С	4.740033000	2.013107000	-1.378601000
С	1.926107000	3.413525000	0.833876000
Н	1.860527000	2.468257000	1.375618000
С	0.570784000	3.669329000	0.174686000
Н	0.537824000	4.649288000	-0.305439000
Н	-0.232213000	3.636952000	0.908328000
Н	0.357753000	2.922812000	-0.590884000
С	2.245418000	4.497503000	1.861095000
Н	3.196911000	4.306841000	2.357811000
Н	1.466475000	4.535199000	2.625042000
Н	2.301963000	5.485316000	1.399484000
С	5.563638000	0.756673000	-1.574258000
Ĥ	5.189579000	-0.012310000	-0.897425000
С	5.431616000	0.196855000	-2.989860000
Ĥ	4.393021000	-0.026709000	-3.232865000
H	6.006913000	-0.727014000	-3.079493000
H	5.814969000	0.886605000	-3.743938000
C	7 027901000	1 002035000	-1 210996000
н	7 484804000	1 751322000	-1 860482000
н	7 607585000	0.082215000	-1 308093000
н	7 130194000	1 350387000	-0 182682000
C	2 725497000	-2 320821000	1 698065000
č	2 016288000	-2 647470000	2 860896000
Ċ.	1 809202000	-3 994438000	3 149616000
н	1 286331000	-4 274763000	4 055165000
C	2 264145000	-4 986357000	2 303626000
й	2 094259000	-6 027112000	2 547169000
C	2 924905000	-4 645526000	1 136438000
н	3 260554000	-5 432959000	0 475001000
C	3 172373000	-3 317053000	0.811314000
č	1 491668000	-1 597667000	3 816291000
й	1 515207000	-0.632471000	3 306896000
C	0.036080000	-1 860275000	4 197860000
н	-0.602327000	-1 897657000	3 314359000
н	-0 339079000	-1 058192000	4 834867000
н	-0.090786000	-2 790116000	4 754180000
Ċ	2 370428000	-1 498912000	5 063806000
н	2 352883000	-2 425789000	5 640429000
н	2.002000000		5 7183/7000
н	3 408503000	-1 285023000	4 810688000
\hat{c}	3 958605000	-2 086208000	-0.441615000
й	3 642456000	-2.006/23000	
\hat{C}	5.042430000	-2.000425000	-0.135160000
ц	5 670571000	2 161663000	-0.133109000
Ц	6 013233000	2 617084000	1 030313000
Ц	5 83705000	3 865877000	0.205110000
\hat{c}	3 710225000	-3.0000077000	_1 585200000
ц	1 105220000	-3.303703000	1 107210000
н	4.13030000	-4.550024000	-1.407042000
н	2 657//1000		-2.000177000
R	2.007441000	0 027850000	0.464640000
B	2 638180000	-0.021009000	0.404040000
D	2.000100000	-0.020322000	0.407044000

Fc[(NDipp)₂Si]:

С	1.524527000	-0.671768000	1.059342000
С	2.015347000	0.051291000	2.183598000

Н	2.387200000	1.065143000	2.167301000
С	1.912194000	-0.784536000	3.320762000
Н	2.193300000	-0.518696000	4.328621000
С	1.368346000	-2.026490000	2.908581000
Н	1.165455000	-2.8/3/62000	3.546378000
C	1.146970000	-1.96/02/000	1.510618000
Н	0.733661000	-2.751673000	0.892380000
C	-1.443147000	0.056309000	1.24/314000
C	-1.048386000	1.155353000	2.062660000
Н	-0.663981000	2.101005000	1.707719000
C	-1.206355000	0.776829000	3.418044000
Н	-0.972131000	1.386342000	4.277923000
C	-1.733125000	-0.537514000	3.448465000
Н	-1.969131000	-1.106189000	4.335459000
	-1.886723000	-0.982863000	2.115446000
Н	-2.256839000	-1.949931000	1.809920000
C	2.619766000	0.256722000	-0.859323000
	3.521828000	-0.088717000	-1.3/14/9000
	4.701189000	-0.235222000	-1.948998000
П	5.412257000	-0.950196000	-2.344300000
	4.979526000	1.110090000	-2.041334000
	5.099032000	1.431344000	-2.303730000
	4.077692000	2.030/01000	-1.344709000
	2 204212000	3.095237000	-1.020900000
Ĉ	2.094313000	2 175407000	-0.937013000
ц	2 21/11/000	-2.175407000	1 003350000
$\hat{\mathbf{C}}$	2.214114000	2 861111000	2 654404000
ц	<i>1 454</i> 03000	2 83/170000	3 006078000
н	2 707321000	-2.034179000	-3.415204000
н	3 133907000	-2.092027000	-2 583101000
\hat{c}	1 135888000	-2 829786000	-0.234672000
н	3 899710000	-3 890677000	-0.234072000
н	3 996373000	-2 362645000	0.739973000
н	5 192645000	-2 749177000	-0.496822000
Ċ	1 950496000	2 686660000	-0.395009000
н	1 173783000	2 182503000	0 183872000
C	2.650778000	3.651147000	0.562190000
Ĥ	3.402716000	4.260563000	0.059216000
н	3.150525000	3,119708000	1.372571000
H	1.927181000	4.336134000	1.007673000
C	1.264026000	3.448647000	-1.529317000
Н	0.718104000	2.773774000	-2.190273000
Н	1.989194000	3.989780000	-2.139613000
Н	0.553959000	4.176771000	-1.132491000
С	-2.670348000	-0.001638000	-0.801252000
С	-3.252664000	-1.214434000	-1.199530000
С	-4.503606000	-1.182544000	-1.807493000
Н	-4.964142000	-2.106951000	-2.134224000
С	-5.173397000	0.009945000	-2.004985000
Н	-6.151019000	0.013924000	-2.469077000
С	-4.583636000	1.198724000	-1.616304000
Н	-5.109756000	2.130415000	-1.783801000
С	-3.324849000	1.218888000	-1.026443000
С	-2.559556000	-2.550186000	-1.030046000
Н	-1.672435000	-2.402376000	-0.411824000
С	-2.087168000	-3.083260000	-2.382838000
Н	-1.413953000	-2.378008000	-2.872436000
Н	-2.927815000	-3.256668000	-3.057162000
Н	-1.556977000	-4.030327000	-2.265252000
C	-3.439824000	-3.5/3367000	-0.313734000
Н	-2.876340000	-4.486560000	-0.115151000

Н	-4.310367000	-3.857261000	-0.906895000
Н	-3.807679000	-3.190632000	0.639055000
С	-2.712288000	2.551634000	-0.655585000
Н	-1.680537000	2.379982000	-0.346743000
С	-2.651876000	3.501401000	-1.850862000
Н	-3.644454000	3.787221000	-2.202055000
Н	-2.118745000	3.049753000	-2.687596000
Н	-2.129694000	4.419605000	-1.576740000
С	-3.449779000	3.188367000	0.521897000
Н	-2.960999000	4.115743000	0.826384000
Н	-3.473002000	2.520615000	1.382930000
Н	-4.481199000	3.429977000	0.258457000
Ν	1.397589000	-0.179812000	-0.255629000
Ν	-1.385039000	-0.008810000	-0.163418000
Fe	0.068263000	-0.504515000	2.423359000
Si	-0.025264000	-0.002352000	-1.269896000

fc[(NBMe₂)₂Si]:

Fe	-0.000023000	-1.564234000	-0.040498000
Si	-0.000172000	2.160685000	-0.114283000
Ν	-1.443806000	1.130860000	-0.059819000
Ν	1.443644000	1.131044000	-0.059866000
С	-1.527319000	-0.282580000	-0.045748000
С	-1.617376000	-1.122349000	-1.189398000
Н	-1.588001000	-0.788250000	-2.216677000
С	-1.716073000	-2.462559000	-0.740887000
Н	-1.779906000	-3.337486000	-1.370726000
С	-1.713106000	-2.453684000	0.676514000
Н	-1.773713000	-3.320818000	1.317348000
С	-1.611136000	-1.108098000	1.108255000
Н	-1.575551000	-0.762566000	2.131572000
С	1.527161000	-0.282394000	-0.047115000
С	1.615102000	-1.120942000	-1.191797000
Н	1.583836000	-0.785801000	-2.218686000
С	1.714761000	-2.461629000	-0.744909000
Н	1.777433000	-3.335864000	-1.375826000
С	1.714509000	-2.454253000	0.672502000
Н	1.776427000	-3.322077000	1.312273000
С	1.613232000	-1.109138000	1.105860000
Н	1.579510000	-0.764643000	2.129580000
В	-2.718813000	1.817546000	-0.003741000
В	2.718444000	1.817690000	-0.001628000
С	-2.882531000	3.389414000	-0.035861000
Н	-3.317125000	3.704911000	0.918418000
Н	-2.006180000	4.007706000	-0.213300000
Н	-3.635405000	3.645542000	-0.786650000
С	-4.049422000	0.969660000	0.122412000
Н	-4.939702000	1.598886000	0.118363000
Н	-4.155104000	0.238241000	-0.682760000
Н	-4.067263000	0.382228000	1.044240000
С	4.048956000	0.970130000	0.127975000
Н	4.939244000	1.599325000	0.121013000
Н	4.066632000	0.387716000	1.053018000
Н	4.154758000	0.234445000	-0.673253000
С	2.882660000	3.389400000	-0.037304000
Н	3.328127000	3.707349000	0.911020000
Н	3.628072000	3.642029000	-0.796887000
Н	2.005421000	4.008227000	-0.208175000

C – References

- S1 F. Neese, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, 1–15.
- S2 S. Grimme, J. G. Brandenburg, C. Bannwarth and A. Hansen, *J. Chem. Phys.*, 2015, **143**, 0–19.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian*, Gaussian, Inc., Wallington CT, 2009.
- S4 A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
- S5 Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 194101.
- S6 J.-D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615.
- S7 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297–305.
- S8 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 1.
- S9 G. A. Andrienko, Chemcraft graphical software for visualization of quantum chemistry computations. Version 1.8, build 654., Chemcraft, 2015.
- S10 N. Weyer, M. Heinz, J. I. Schweizer, C. Bruhn, M. C. Holthausen and U. Siemeling, Angew. Chem. Int. Ed., 2021, 60, 2624–2628. Note that we have obtained slighty different energy values due to our use of the newer ORCA version 5.0.3.