Electronic Supplementary Information for

The influence of light on the field-induced magnetization dynamics of two Er(III) coordination polymers with different halogen substituents

Xiaoshuang Gou,^a Yuewei Wu,^a Mengmeng Wang,^a Ning Liu,^a Wenlong Lan,^a Yi-Quan

Zhang,^b Wei Shi*^a and Peng Cheng*^a

^aDepartment of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.

^bSchool of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R.

China.

Table of Contents

1. StructuresS1
2. PXRD patternsS3
3. TGA patternsS4
4. IR spectraS5
5. UV-vis spectraS6
6. EPR spectraS7
7. Magnetic characterizationsS8
8. Photomagnetic characterizationsS10
9. Calculated ligand structuresS19
10. XRD dataS20
11. Symmetries and deviated valuesS21
12. Relaxation fitting parametersS22
13. The fitting parameters of relaxation processes for 1, 1a, 2 and 2aS26
13. Calculated energy levels of the lowest ten states of H_2CA and H_2BAS27
14. Calculated ADCH charges per atom in the lowest three states of H_2CA and
H2BAS28

Fig. S1 (a) View of one six-membered ring in 1. (b) Top view of 2D hexagonal layer in 1.(c) Side view of the layers in 1. The closest Er(III) sites in neighboring layers is 6. 234(6) Å in 1. Cyan, red, green and grey spheres represent Er, O, Cl and C atoms, respectively.

Fig. S2 View of one six-membered ring in 2. (b) Top view of 2D hexagonal layer in 2. (c)
Side view of the layers in 2. The closest Er(III) sites in neighboring layers is 6. 287(1) Å in
2. Cyan, red, wine and grey spheres represent Er, O, Br and C atoms, respectively.

Fig. S3 Experimental and simulated PXRD patterns for 1.

Fig. S4 Experimental and simulated PXRD patterns for 2.

Fig. S5 Thermogravimetric analysis for **1** under N_2 atmosphere (heating rate = 5 °C/min).

Fig. S6 Thermogravimetric analysis for **2** under N_2 atmosphere (heating rate = 5 °C/min).

Fig. S7 IR spectra of $\mathbf{1}$ and H_2CA .

Fig. S8 IR spectra of $\mathbf{2}$ and H_2BA .

Fig. S9 Uv-vis spectra of $\mathbf{1}$ and H_2CA .

Fig. S10 Uv-vis spectra of ${f 2}$ and H₂BA.

Fig. S11 EPR spectra of 1 and 2.

Fig. S12 Temperature dependence of the χ' and χ'' for **1** at zero dc field in the temperature range of 2–50 K, $\nu = 100$, 800 Hz.

Fig. S13 Temperature dependence of the χ' and χ'' for **2** at zero dc field in the temperature range of 2–50 K, $\nu = 100$, 800 Hz.

Fig. S14 Frequency dependence of the χ'' at 2 K in various dc fields for **1** (a) and **2** (b).

Fig. S15 Field dependence of the magnetic relaxation time (τ) for **1** (a) and **2** (b).

Fig. S16 Temperature dependence of the in-phase χ' and out-of-phase χ'' molar magnetic susceptibility for **1** at 1200 Oe dc field in the temperature range of 2–14 K, $\nu = 100-800$ Hz.

Fig. S17 Temperature dependence of the in-phase χ' and out-of-phase χ'' molar magnetic susceptibility for **1a** at 1200 Oe dc field in the temperature range of 2–14 K, $\nu = 100-800$ Hz.

Fig. S18 Temperature dependence of the in-phase χ' and out-of-phase χ'' molar magnetic susceptibility for **2** at 1400 Oe dc field in the temperature range of 2–14 K, $\nu = 100-800$ Hz.

Fig. S19 Temperature dependence of the in-phase χ' and out-of-phase χ'' molar magnetic susceptibility for **2a** at 1400 Oe dc field in the temperature range of 2–14 K, $\nu = 100-800$ Hz.

Fig. S20 Frequency dependence of the in-phase χ' and out-of-phase χ'' molar magnetic susceptibility for **1** at 1200 Oe dc field.

Fig. S21 Frequency dependence of the in-phase χ' and out-of-phase χ'' molar magnetic susceptibility for **1a** at 1200 Oe dc field.

Fig. S22 Frequency dependence of the in-phase χ' and out-of-phase χ'' molar magnetic susceptibility for **2** at 1400 Oe dc field at ac frequencies.

Fig. S23 Frequency dependence of the in-phase χ' and out-of-phase χ'' molar magnetic susceptibility for **2a**, collected in 1400 Oe dc field.

Fig. S24 Cole-Cole plots of 1.

Fig. S25 Cole-Cole plots of 1a.

Fig. S26 Cole-Cole plots of 2.

Fig. S27 Cole-cole plots of 2a.

Fig. S28 The plots of the relaxation time τ vs T on a log-log scale for **1**, **1a**, **2** and **2a**.

Fig. S29 The plot of the relaxation time difference ($\Delta \tau$) between **1** and **1a**. The straight solid line shows the linear fitting by $\Delta \tau = -0.12502T + 0.57248$, R² = 0.9983.

Fig. S30 The plot of the relaxation time difference ($\Delta \tau$) between **2** and **2a**. The straight solid lines show the linear fitting by $\Delta \tau = -0.07227T + 0.24337$, R² = 0.9577 (2–2.7 K) and $\Delta \tau = -0.01390T + 0.05510$, R² = 0.9167 (2.7–4 K).

Fig. S31 Calculated ligand structure with charges per atom in the lowest three states.

Compounds	1	2
CCDC	2161869	2161860
Formula	$C_9H_{12}CI_3ErO_{12}$	$C_9H_{12}Br_3ErO_{12}$
Formula weight	585.80	719.18
Temperature (K)	298(2)	298(2)
Crystal colour	Black	Black
Wavelength (Å)	0.71073	0.71073
Crystal system	Triclinic	Triclinic
Space group	PĪ	PĪ
a (Å)	9.1911(3)	9.1947(3)
b (Å)	10.1363(3)	10.2230(3)
<i>c</i> (Å)	11.0340(4)	11.0842(4)
α (deg)	64.916(3)	65.914(3)
eta (deg)	69.776(3)	70.234(3)
γ (deg)	81.116(3)	80.603(3)
Ζ	2	2
V (Å ³)	873.58(6)	894.75(6)
$ ho_{calc}$ (g/cm ³)	2.227	2.669
µ (mm⁻¹)	5.319	11.445
<i>F</i> (000)	562.0	670.0
R _{int}	0.0245	0.0441
Goodness-of-fit on F^2	1.077	1.039
^a R_1 , ^b w R_2 (I $\geq 2\sigma$ (I))	0.0185, 0.0447	0.0293, 0.0520
^a R_1 , ^b w R_2 (all data)	0.0199, 0.0451	0.0429, 0.0546

Table S1. Crystal data and structure refinement details for 1 and 2.

^a $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|, \ ^b wR_2 = |\sum w (|F_0|^2 - |F_c|^2) |/ \sum |w(F_0)^2|^{1/2}$

Shape	Symmetry	1	2
Enneagon	D_{9h}	36.484	36.330
Octagonal pyramid	C _{8v}	21.385	21.462
Heptagonal bipyramid	D_{7h}	19.929	20.085
Johnson triangular cupola J3	C _{3v}	15.004	14.882
Capped cube J8	C_{4v}	10.963	10.716
Spherical-relaxed capped cube	C_{4v}	9.769	9.799
Capped square antiprism J10	C_{4v}	1.697	1.691
Spherical capped square antiprism	C_{4v}	0.671	0.694
Tricapped trigonal prism J51	D_{3h}	1.869	1.858
Spherical tricapped trigonal prism	D_{3h}	0.555	0.561
Tridiminished icosahedron J63	C _{3v}	12.105	11.977
Hula-hoop	C _{2v}	12.705	12.250
Muffin	Cs	1.240	1.387

Table S2. Symmetries and deviated values of Er(III) centers for **1** and **2**.

Т	χs	χт	τ/s	α	Residual
2	0.69352	3.1882	3.24491E-4	0.0343	0.00875
2.1	0.66475	3.02175	3.11815E-4	0.04322	0.01043
2.2	0.63614	2.88659	2.95957E-4	0.04784	0.01358
2.3	0.6102	2.76494	2.81794E-4	0.05282	0.01839
2.4	0.59276	2.66867	2.70312E-4	0.06123	0.02476
2.5	0.58687	2.57041	2.60056E-4	0.06038	0.02628
2.6	0.57969	2.4799	2.45625E-4	0.06544	0.01554
2.7	0.56358	2.39916	2.33562E-4	0.06878	0.01769
2.8	0.55463	2.3223	2.22202E-4	0.06951	0.01305
2.9	0.52819	2.26073	2.09058E-4	0.08121	0.02087
3	0.52468	2.18857	1.9879E-4	0.07707	0.01376
3.1	0.51579	2.12907	1.86566E-4	0.08272	0.01355
3.2	0.50879	2.06921	1.77015E-4	0.0798	0.01104
3.3	0.49156	2.01594	1.64172E-4	0.0851	0.00894
3.4	0.47458	1.95984	1.50317E-4	0.0865	0.00816

Table S3. Relaxation fitting parameters for 1.

Т	χs	χт	τ/s	α	Residual
2	2.41482E-8	4.86439	2.90178E-4	0.1281	0.27789
2.1	3.26606E-8	4.56914	2.69493E-4	0.15057	0.20652
2.2	4.98888E-8	4.36936	2.59758E-4	0.14892	0.14668
2.3	7.30158E-8	4.187	2.47095E-4	0.15408	0.14354
2.4	1.01261E-7	4.04313	2.33119E-4	0.16453	0.15599
2.5	1.53802E-7	3.89749	2.24013E-4	0.16202	0.1459
2.6	2.08985E-7	3.77456	2.13305E-4	0.16691	0.13251
2.75	3.02983E-7	3.60319	1.9296E-4	0.17814	0.14055
2.9	4.29621E-7	3.43093	1.81248E-4	0.16924	0.08768
3.05	6.58519E-7	3.28367	1.65645E-4	0.1688	0.07039
3.2	9.39617E-7	3.15127	1.50241E-4	0.16877	0.05795
3.35	1.2497E-6	3.02798	1.34924E-4	0.16911	0.05289
3.5	1.75841E-6	2.91249	1.19177E-4	0.16808	0.04982

Table S4. Relaxation fitting parameters for **1a**.

Т	χs	χT	τ/s	α	Residual
2	0.78042	3.31096	2.97298E-4	0.10007	0.03565
2.1	0.74521	3.15548	2.59106E-4	0.10016	0.02676
2.2	0.72317	3.0344	2.30778E-4	0.10724	0.03738
2.3	0.69317	2.91696	2.00038E-4	0.11294	0.03681
2.4	0.75112	2.81448	1.83857E-4	0.09883	0.02208
2.5	0.713	2.71694	1.55463E-4	0.10599	0.03371
2.6	0.81227	2.6213	1.45446E-4	0.07977	0.02327
2.7	0.67136	2.546	1.10148E-4	0.10838	0.0244
2.8	0.54897	2.47357	8.36881E-5	0.12465	0.0261
2.9	0.29443	2.40261	5.69546E-5	0.14234	0.01969
3	0.08821	2.32917	4.07978E-5	0.14172	0.02572
3.1	8.08744E-14	2.34523	3.14507E-5	0.15048	0.01423
3.2	1.22129E-13	2.27996	2.41374E-5	0.15268	0.0119
3.3	1.74125E-13	2.22003	1.83882E-5	0.16065	0.00972
3.4	2.64525E-13	2.16598	1.31743E-5	0.18586	0.00802
3.5	4.00433E-13	2.11171	9.45335E-6	0.20731	0.00889

Table S5. Relaxation fitting parameters for 2.

Т	χs	χτ	τ/s	α	Residual
2	7.53477E-6	3.20149	1.97967E-4	0.20565	0.10974
2.1	1.03976E-5	3.03808	1.70466E-4	0.20312	0.08538
2.2	1.41068E-5	2.92456	1.47965E-4	0.20423	0.0602
2.3	2.13861E-5	2.80518	1.2623E-4	0.19904	0.04866
2.4	3.27051E-5	2.69681	1.06613E-4	0.19485	0.03744
2.5	4.88834E-5	2.61078	8.907E-5	0.19837	0.02693
2.6	7.57031E-5	2.5177	7.39878E-5	0.18986	0.02524
2.7	1.06454E-4	2.43707	5.98485E-5	0.18924	0.01995
2.8	1.63054E-4	2.35502	4.84814E-5	0.17742	0.01381
2.9	2.41248E-4	2.28005	3.81673E-5	0.17113	0.01163
3	3.50079E-4	2.22145	2.82269E-5	0.18913	0.01948
3.1	5.0664E-4	2.15829	2.04919E-5	0.20186	0.01773
3.2	7.77148E-4	2.09355	1.55206E-5	0.19567	0.00729
3.3	0.00115	2.0425	9.78397E-6	0.24106	0.00964
3.4	0.00174	1.98874	6.2022E-6	0.27331	0.00563
3.5	0.0025	1.93895	3.61472E-6	0.31206	0.00501

Table S6. Relaxation fitting parameters for **2a**.

Complexes	A (s ⁻¹ K ⁻ⁿ)	n	$U_{ m eff}$ (K)	$ au_0$ (s)	R ²
1	1105 ± 66	$1.40~\pm~0.06$			0.9769
1a	1156 ± 78	1.51 ± 0.07			0.9782
2	1141 ± 39	1.61 ± 0.45	37.73 ± 2.11	$2.18 \times 10^{-10} \pm 1.35 \times 10^{-11}$	0.9981
2a	417 ± 6	$3.56~\pm~0.16$	$56.52~\pm~0.14$	$\begin{array}{l} 4.66 \ \times \ 10^{\text{-13}} \ \pm \\ 2.78 \ \times \ 10^{\text{-14}} \end{array}$	0.9984

Table S7. The fitting parameters of relaxation processes for 1, 1a, 2 and 2a.

Table S8. Calculated energy levels (eV) of the lowest ten states of H_2CA and H_2BA , where Root* represent the different excited states.

Excited states	Energy	/ levels
	H ₂ CA	H ₂ BA
Ground	0.00	0.00
Root1	2.83	2.97
Root2	3.02	3.08
Root3	3.44	3.51
Root4	3.47	3.57
Root5	4.07	4.15
Root6	4.16	4.24
Root7	5.18	4.35
Root8	5.24	4.49
Root9	5.87	5.31

Table S9. Calculated ADCH charges (e) per atom in the lowest three states of H_2CA and H_2BA , where Ground, Root1 and Root2 represent the ground, first and second excited states, respectively.

	Ground	Root1	Root2
C1	-0.13/-0.11	0.16/0.04	-0.14/-0.10
C2	0.19/0.05	0.07/-0.03	0.12/-0.02
C3	0.16/0.05	0.02/-0.03	0.07/-0.02
C4	0.16/0.05	0.03/-0.03	0.08/-0.02
C5	0.19/0.05	0.08/-0.03	0.12/-0.02
C6	-0.13/-0.11	0.16/0.04	-0.14/-0.10
O1	-0.49/-0.39	-0.56/-0.43	-0.42/-0.32
02	-0.48/-0.38	-0.53/-0.42	-0.39/-0.33
O3	-0.48/-0.38	-0.53/-0.42	-0.40/-0.33
O4	-0.49/-0.39	-0.56/-0.43	-0.42/-0.31
Cl1/Br1	-0.25/-0.22	-0.17/-0.13	-0.24/-0.21
Cl2/Br2	-0.25/-0.22	-0.17/-0.13	-0.24/-0.21