Supporting Information

for

Synthesis and reactivity of $\operatorname{Pd}($ II $)$ imidoyl complexes obtained by insertion of isocyanoferrocene into the Pd-C bonds of orthopalladated precursors

Michal Franc, Petr Vosáhlo, Jiří Schulz, Ivana Císařová and Petr Štěpnička*
Department of Inorganic Chemistry, Faculty of Science, Charles University,
Hlavova 2030, 128 40, Prague, Czech Republic

Contents

Experimental S-2
X-ray crystallography S-11
Cyclic voltammograms S-24
DFT calculations S-26
Copies of the NMR spectra S-29
References S-56

Experimental

Materials and methods

Unless stated otherwise, the syntheses were performed under an inert atmosphere (argon or dinitrogen) using standard Schlenk techniques and oven-dried glassware. Complex $\left[\left(\mathrm{L}^{\mathrm{SC}}\right) \mathrm{PdCl}\right]_{2}{ }^{1}$ and isocyanoferrocene ${ }^{2}$ were prepared according to the literature procedures. Other chemicals were purchased from commercial vendors (Sigma-Aldrich and TCI) and used as received. Anhydrous dichloromethane and methanol used during syntheses were obtained from a PureSolv MD5 solvent purification system (Innovative Technology, USA). Solvents utilised for work-up and crystallisations were used without additional purification (Lach-Ner, Czech Republic, p.a. grade).

NMR spectra were recorded at $25^{\circ} \mathrm{C}$ on a Varian Unity Inova 400 spectrometer operating at 400,101 and 162 MHz for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$, respectively. Chemical shifts (δ in ppm) are given relative to internal $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ and external 85% aqueous $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$. FTIR spectra were recorded over the $400-4000 \mathrm{~cm}^{-1}$ range on a Thermo Nicolet 6700 spectrometer. Electrospray ionisation mass spectra were acquired on a Compact QTOF-MS spectrometer (Bruker Daltonics). Elemental analyses were performed on a PE 2400 Series II CHNS/O Elemental Analyser (Perkin Elmer). The amount of residual solvent was confirmed by NMR analysis.

Electrochemical measurements were performed with an μ AUTOLAB III instrument (Eco Chemie, The Netherlands) at room temperature and a three-electrode cell equipped with a glassy carbon disc (2 mm diameter) working electrode, a platinum sheet auxiliary electrode, and an $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{M} \mathrm{KCl})$ reference electrode. The samples were dissolved in anhydrous dichloromethane to give a solution containing 1 mM of the analyte and $0.1 \mathrm{M} \mathrm{Bu}{ }_{4} \mathrm{~N}\left[\mathrm{PF}_{6}\right]$ (Sigma-Aldrich, puriss. for electrochemistry). The solutions were deaerated by bubbling with argon before the measurement and then maintained under an argon blanket. Decamethylferrocene (Alfa-Aesar) was added as an internal standard for the final scans, and the determined redox potentials were converted into the ferrocene/ferrocenium scale by subtracting $0.548 \mathrm{~V} .{ }^{3}$

Syntheses

Synthesis of 1a. A solution of triphenylphosphine ($105 \mathrm{mg}, 0.40 \mathrm{mmol}$) in dichloromethane (5 mL) was added to $\left[\left(\mathrm{L}^{\mathrm{NC}}\right) \mathrm{PdCl}\right]_{2}(113 \mathrm{mg}, 0.20 \mathrm{mmol})$ suspended in the same solvent (5 mL). The solid rapidly dissolved to give a clear yellowish solution, which was stirred for 1 h and then precipitated by adding into pentane. The precipitate was filtered off and dried under vacuum to give 1a as a yellowish solid. The mother liquor was evaporated and the residue crystallised from hot methanol. The separated solid was filtered off and dried under vacuum. The combined yield of $\mathbf{1 a}$ was 221 mg (95\%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(399.95 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.85\left(\mathrm{~d},{ }^{4} J_{\mathrm{PH}}=2.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{NMe}_{2}\right), 4.07\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PH}}=2.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{NCH}_{2}\right), 6.29-6.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.81\left(\mathrm{td}, J_{\mathrm{HH}}=7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.00\left(\mathrm{dd}, J_{\mathrm{HH}}=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{C}_{6} \mathrm{H}_{4}$), 7.31-7.44 (m, 9H, PPh_{3}), 7.68-7.76 (m, 6H, PPh_{3}). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.58 MHz, CDCl_{3}): $\delta 50.53$ ($\mathrm{d}, 3^{3} \mathrm{PC}=3 \mathrm{~Hz}, \mathrm{NMe}_{2}$), $73.23\left(\mathrm{~d}, 3_{\mathrm{PC}}=3 \mathrm{~Hz}, \mathrm{NCH}_{2}\right.$), 122.31 ($\mathrm{s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}$), 123.78 ($\mathrm{s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}$), 124.87 $\left(\mathrm{d}, J_{\mathrm{PC}}=6 \mathrm{~Hz}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 127.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=11 \mathrm{~Hz}, \mathrm{CH}^{\text {meta }} \mathrm{PPh}_{3}\right), 130.47\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PC}}=3 \mathrm{~Hz}, \mathrm{CH}^{\text {para }} \mathrm{PPh}_{3}\right)$, $131.38\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=50 \mathrm{~Hz}, \mathrm{C}^{\text {ipso }} \mathrm{PPh}_{3}\right), 135.28\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=12 \mathrm{~Hz}, \mathrm{CH}^{2}\right.$ ortho $\left.\mathrm{PPh}_{3}\right), 137.86\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=11 \mathrm{~Hz}, \mathrm{CH}\right.$
 43.0 (s). ESI+ MS: m/z 502 ([M - Cl]+). IR (DRIFTS, KBr): $v_{\max } 3052$ w, 3008 w, 1579 w, 1479 w, 1466 w, 1452 m, 1435 m, 1311 w, 1290 w, 1181 w, 1097 m, 1072 w, 1047 w, 1020 w, 997 w, 974 w, 933 w, 867 w, 846 m, 748 s, 702 s, 695 s, 535 s, $514 \mathrm{~s}, 495 \mathrm{~m}, 459 \mathrm{w}, 436 \mathrm{w}, 427 \mathrm{w} \mathrm{cm}{ }^{-1}$. The NMR data match those in the literature. ${ }^{4}$

Synthesis of 1b. A solution of trimethylphosphine (0.44 mL of 1 M in THF, ca. 0.44 mmol) was added to a dichloromethane suspension of $\left[\left(\mathrm{L}^{N C}\right) \mathrm{PdCl}\right]_{2}(110 \mathrm{mg}, 0.20 \mathrm{mmol}$ in 5 mL$)$ and the mixture was stirred for 30 min . The resulting clear solution was concentrated under reduced pressure and the crude product was three times redissolved in chloroform and evaporated to remove THF. The crude product was purified by chromatography over silica gel using dichloromethane/methanol (75:1) as the eluent. The first light yellow band was collected and evaporated, affording 1b as a light yellow solid. Yield: 134 mg (95\%)
${ }^{1} \mathrm{H}$ NMR ($399.95 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.64\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=10.7 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{PMe}_{3}\right), 2.70\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PH}}=2.8 \mathrm{~Hz}, 6 \mathrm{H}\right.$, NMe_{2}), $3.92\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PH}}=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.94-7.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 16.63\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=33 \mathrm{~Hz}, \mathrm{PMe}_{3}\right), 50.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=3 \mathrm{~Hz}, \mathrm{NMe}_{2}\right), 72.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=4 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 123.08(\mathrm{~s}$, CH C6 H_{4}), $124.24\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 125.73\left(\mathrm{~d}, J_{\mathrm{PC}}=6 \mathrm{~Hz}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 135.47\left(\mathrm{~d}, J_{\mathrm{PC}}=11 \mathrm{~Hz}, \mathrm{CH}_{6} \mathrm{H}_{4}\right)$, $148.80\left(\mathrm{~d}, J_{\mathrm{PC}}=2 \mathrm{~Hz}, C^{\left.\text {ipso }-C C_{6} H_{4}\right), 151.23\left(\mathrm{~d}, J_{\mathrm{PC}}=4 \mathrm{~Hz}, \mathrm{Cipso}^{\mathrm{P}} \mathrm{Pd}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(161.90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~}\right.$ δ-2.9 (s). ESI+ MS: m/z 316 ([M - Cl]+). IR (DRIFTS, KBr): $v_{\max } 3054$ w, $3043 \mathrm{w}, 3006 \mathrm{w}, 2976 \mathrm{w}$, 2909 m, 2857 w, 2835 w, 2800 w, 2788 w, 1577 w, 1456 m, 1449 s, 1435 m, 1410 m, 1356 w, 1307 w, 1291 m, 1284 m, 1263 w, 1247 w, 1181 w, 1139 w, 1105 w, 1049 w, 1019 w, 993 m, 959 s, 935 s, 871 s, 849 s, 760 s, 752 s, $738 \mathrm{~m}, 715 \mathrm{w}, 683 \mathrm{w}, 656 \mathrm{w}, 614 \mathrm{w}, 516 \mathrm{w}, 487 \mathrm{w}, 437 \mathrm{w} \mathrm{cm}{ }^{-1}$. Anal. Calc. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{ClNPPd}$ (352.15): C 40.93, H 6.01, N 3.98\%. Found: C 41.18, H 6.00, N 3.62%.

Synthesis of 2a. A solution of triphenylphosphine ($105 \mathrm{mg}, 0.40 \mathrm{mmol}$) in dichloromethane $(5 \mathrm{~mL})$ was added to a solution of $\left[\left(\mathrm{L}^{\mathrm{SC}}\right) \mathrm{PdCl}\right]_{2}(112 \mathrm{mg}, 0.2 \mathrm{mmol})$ in the same solvent $(5 \mathrm{~mL})$. The resulting clear yellowish solution was stirred for 1 h and evaporated, leaving pure 2a as a yellowish solid in quantitative yield.
${ }^{1} \mathrm{H}$ NMR (399.95 MHz, CDCl_{3}): $\delta 2.70$ (br s, $3 \mathrm{H}, \mathrm{SMe}$), 4.24 (br s, 2H, SCH_{2}), 6.33 (dt, $J=7.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), 6.45-6.52 (br m, 1H, C ${ }_{6} \mathrm{H}_{4}$), $6.76\left(\mathrm{td}, J_{\mathrm{HH}}=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$), $7.04(\mathrm{dd}, J=7.5$, $\left.1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.31-7.38\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.39-7.45\left(\mathrm{~m}, 3 \mathrm{H} \mathrm{PPh}_{3}\right), 7.65-7.72\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{PPh}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.58 MHz, CDCl_{3}): $\delta 21.32(\mathrm{~s}, \mathrm{SMe}), 48.35\left(\mathrm{~s}, \mathrm{SCH}_{2}\right), 123.93\left(\mathrm{~s}, 2 \times \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 125.56\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}\right.$
$\left.=5 \mathrm{~Hz}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=11 \mathrm{~Hz}, \mathrm{CH}^{\text {meta }} \mathrm{PPh}_{3}\right), 130.56\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PC}}=2 \mathrm{~Hz}, \mathrm{CH}^{\text {para }} \mathrm{PPh}_{3}\right), 130.73$ ($\mathrm{d},{ }^{1} J_{\mathrm{PC}}=47 \mathrm{~Hz}, \mathrm{C}^{\text {ipso }} \mathrm{PPh}_{3}$), $135.26\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=12 \mathrm{~Hz}, \mathrm{CH}^{\text {ortho }} \mathrm{PPh}_{3}\right.$), $139.71\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=12 \mathrm{~Hz}, \mathrm{CH}_{6} \mathrm{H}_{4}\right)$, 148.51 (s, Cipso-C C ${ }_{6} \mathrm{H}_{4}$), 151.86 (s, Cipso-Pd). ${ }^{31}{ }^{\mathrm{P}}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($161.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 37.5$ (s). ESI+ MS: m/z 505 ([M - Cl]+). IR (DRIFTS, KBr): $v_{\text {max }} 3051$ w, 3004 w, 2987 w, 2918 w, 1574 w, 1481 m, 1435 s, 1313 w, 1290 w, 1185 w, 1159 w, 1096 m, 1072 w, 1020 w, 998 w 967 w, 850 w, 741 s, 703 s, 693 s, 650 w, 619 w, 529 vs, 511 s, 496 m, $437 \mathrm{w} \mathrm{cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{ClPPdS}$ (541.38): C 57.68, H 4.47\%. Found: C 57.30, H 4.11\%.

Synthesis of $\mathbf{2 b}$. A solution of trimethylphosphine (0.4 mL of 1 M in THF, ca. 0.4 mmol) was added to a dichloromethane solution of $\left[\left(\mathrm{L}^{S C}\right) \mathrm{PdCl}\right]_{2}(112 \mathrm{mg}, 0.20 \mathrm{mmol}$ in 5 mL$)$, and the mixture was stirred for 40 min . The resulting clear solution was concentrated under reduced pressure and the residue was three times redissolved in chloroform and evaporated to remove THF. According to NMR analysis, the product was essentially pure and was therefore used directly in the following step. Yield: 138 mg (95\%), yellowish solid.
${ }^{1} \mathrm{H}$ NMR ($399.95 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.62\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=10.6 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{PMe}_{3}\right.$), $2.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=4.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$, SMe), 4.12 (br s, 2H, SCH_{2}), 6.93-7.01 (m, 2H, C $\mathrm{C}_{6} \mathrm{H}_{4}$), 7.07-7.18 (m, 2H, C $\mathrm{C}_{6} \mathrm{H}_{4}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.58 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.81\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=31 \mathrm{~Hz}, \mathrm{PMe}_{3}\right), 20.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=2 \mathrm{~Hz}, \mathrm{SMe}\right), 47.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=1 \mathrm{~Hz}, \mathrm{SCH}_{2}\right)$, 124.35 ($\mathrm{s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}$), $124.70\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 126.28\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=6 \mathrm{~Hz}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right.$), $137.69\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=13 \mathrm{~Hz}, \mathrm{CH}\right.$ $\mathrm{C}_{6} \mathrm{H}_{4}$), $148.96\left(\mathrm{~s}, J_{\mathrm{PC}}=2 \mathrm{~Hz}, C^{\text {ipso- }} \mathrm{C}_{6} \mathrm{H}_{4}\right), 152.17\left(\mathrm{~s}, \mathrm{C}^{\mathrm{ipso}}-\mathrm{Pd}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($161.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ -5.8 (s). ESI+ MS: m/z 319 ([M - Cl]+). IR (DRIFTS, KBr): $v_{\text {max }} 3048$ w, 3016 w, 2975 w, 2915 w, 2901 w, 1570 w, 1445 m, 1434 m, 1418 m, 1317 w, 1306 w, 1284 m, 1259 w, 1152 w, 1129 w, 1101 w, 1044 w, 1023 w, 962 s, 952 vs, 938 m, 872 w, 856 w, 807 w, 765 s, 743 m 716 w, 698 w, 680 w, 651 w, 572 w, 503 w, $445 \mathrm{~m} \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{11} \mathrm{H}_{18}$ CIPPdS (355.17): C 37.20, H 5.11\%. Found: C 36.93, H 4.86\%.

Synthesis of trans-3. Complex trans-3 was prepared similarly using trimethylphosphine (0.8 mL of 1 M in THF, ca. 0.8 mmol), $\left[\left(\mathrm{L}^{\mathrm{SC}}\right) \mathrm{PdCl}\right]_{2}(112 \mathrm{mg}, 0.20 \mathrm{mmol})$ and 5 mL of the solvent. The mixture was stirred for 3 h and worked up as described above, leaving 3 as a colourless solid in quantitative yield (172.5 mg). Crystals used for structure determination were grown from chloroform/hexane.
${ }^{1} \mathrm{H}$ NMR ($399.95 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.20$ (apparent t, $J=3.4 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{PMe}_{3}$), 2.16 (s, 3H, SMe), $3.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 6.87-6.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.08-7.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.24-7.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.58 MHz, CDCl_{3}): $\delta 13.78$ (apparent $\mathrm{t}, \mathrm{J}=15 \mathrm{~Hz}, \mathrm{PMe}_{3}$), 16.37 (s, SMe), 44.20 (apparent $\mathrm{t}, J=2 \mathrm{~Hz}, \mathrm{SCH}_{2}$), $122.76\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 126.14\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.82\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 135.53$ (apparent
 Pd). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($161.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-14.9$ (s). ESI+ MS: m/z 319 ([M - $\left.\mathrm{Cl}-\mathrm{PMe}_{3}\right]^{+}$). IR (DRIFTS, KBr): $v_{\max } 3038$ w, 2983 w, 2964 w, 2904 m, 2809 w, 2019 w, 1956 w, 1915 w, 1571 m, 1556 w, 1453 m, 1431 m, 1419 m, 1320 m, 1299 w, 1283 m, 1242 w, 1194 w, 1159 w, 1142 w,

1097 w, $1045 \mathrm{~m}, 1030 \mathrm{~m}, 1013 \mathrm{w}, 954 \mathrm{~s}, 876 \mathrm{w}, 856 \mathrm{~m}, 813 \mathrm{w}, 775 \mathrm{~m}, 742 \mathrm{~s}, 719 \mathrm{w}, 696 \mathrm{w}, 673 \mathrm{~m}$, 649 w, 578 w, 509 w, $447 \mathrm{w} \mathrm{cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{ClP}_{2} \operatorname{PdS}$ (431.25): C 38.99, H 6.31\%. Found: C 38.88, H 6.31\%.

Synthesis of 4a. Complex $\mathbf{1 a}(54 \mathrm{mg}, 0.10 \mathrm{mmol})$ was dissolved in dichloromethane (3 mL) and the solution was added to isocyanoferrocene dissolved in the same solvent ($21 \mathrm{mg}, 0.10 \mathrm{mmol}$ in 3 mL). The resulting mixture was stirred for 30 min , during which time the initially light orange mixture turned deep orange. Then, the reaction mixture was evaporated under reduced pressure and the solid residue was purified by chromatography over silica gel, eluting with dichloromethane/methanol (10:1). The first orange band containing the product was collected and evaporated, leaving 4a as an orange solid. Yield: 58 mg (77\%). Crystals used for structure determination were grown from ethyl acetate/hexane.
${ }^{1} \mathrm{H}$ NMR ($399.95 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.84\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PH}}=1.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NMe}_{2}\right), 3.06\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=11.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{PH}}\right.$ $\left.=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.21\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PH}}=2.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NMe}_{2}\right), 3.71\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.95\left(\mathrm{vt}, J^{\prime}\right.$ $\left.=1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.13\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.37\left(\mathrm{vq}, J^{\prime}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.73(\mathrm{br} \mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 6.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.08\left(\mathrm{td}, J=7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.13-7.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.23-7.29(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.34-7.47\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{PPh}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 48.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=2 \mathrm{~Hz}, \mathrm{NMe}_{2}\right)$, $50.96\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=2 \mathrm{~Hz}, \mathrm{NMe}_{2}\right), 61.89\left(\mathrm{~d}, J_{\mathrm{PC}}=2 \mathrm{~Hz}, \mathrm{CH}_{5} \mathrm{H}_{4}\right), 65.72\left(\mathrm{~d},{ }^{3} \mathrm{JPC}_{\mathrm{PC}}=2 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 66.21(\mathrm{~s}, \mathrm{CH}$
 121.90 ($\mathrm{s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}$), 126.35 ($\mathrm{s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}$), 127.83 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=11 \mathrm{~Hz}, \mathrm{CH}^{\text {meta }} \mathrm{PPh}_{3}$), $128.94\left(\mathrm{~s}, \mathrm{CH}_{6} \mathrm{H}_{4}\right.$), $129.36\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.31\left(\mathrm{~d},{ }^{4} \mathrm{JpC}=2 \mathrm{~Hz}, \mathrm{CH}^{\text {para }} \mathrm{PPh}_{3}\right), 131.26\left(\mathrm{~d},{ }^{1} \mathrm{JPC}_{\mathrm{PC}}=49 \mathrm{~Hz}, \mathrm{C}^{\text {ipso }} \mathrm{PPh}_{3}\right), 131.72$ ($\mathrm{s}, C^{\text {ipso-C C C }}{ }_{6} \mathrm{H}_{4}$), $134.69\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=12 \mathrm{~Hz}\right.$, CHortho $\left.\mathrm{PPh}_{3}\right), 144.02\left(\mathrm{~d}, J_{\mathrm{PC}}=8 \mathrm{~Hz}, C^{\text {ipso }-C ~ C} \mathrm{C}_{6} \mathrm{H}_{4}\right), 190.27(\mathrm{~d}$, $J_{\mathrm{PC}}=2 \mathrm{~Hz}$, Cipso-Pd $^{\text {in }} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($161.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.5(\mathrm{~s}) . \mathrm{ESI}+\mathrm{MS}: m / z 748\left([\mathrm{M}-\mathrm{H}]^{+}\right), 713$ ([M - Cl] ${ }^{+}$). IR (DRIFTS, KBr): $v_{\text {max }} 3061 \mathrm{w}, 3014 \mathrm{vw}, 2879 \mathrm{w}, 1745 \mathrm{w}, 1606 \mathrm{~m}, 1596 \mathrm{~m}, 1571 \mathrm{w}$, 1480 w, 1434 m, 1398 w, 1333 w, 1238 w, 1213 w, 1203 w, 1183 w, 1156 w 1105 w, 1094 m, 1029 w, 1019 w, 999 w, 989 w, 962 w, 926 w, 889 m, 882 m, 839 m, $817 \mathrm{~m}, 809$ w, 760 s, 751 m, 739 s, 710 s, 694 vs, 655 w, 636 w, 599 w, 571 w, 530 vs, 507 s, 495 s, 454 w, $435 \mathrm{w} \mathrm{cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{ClFeN}_{2}$ PPd (749.40): C 60.90, H 4.84, N 3.74\%. Found: C 60.53 , H 4.92, N 3.48\%.

Synthesis of $\mathbf{4 b}$. Complex $\mathbf{4 b}$ was prepared similarly starting from $\mathbf{1 b}(44.0 \mathrm{mg}, 0.125$ mmol) and isocyanoferrocene ($26.4 \mathrm{mg}, 0.125 \mathrm{mmol}$) in 9 mL of dichloromethane. Isolation as described above produced the target compound as an orange solid. Yield: 60 mg (85%). X-ray quality crystals were grown from ethyl acetate/hexane.
${ }^{1} \mathrm{H}$ NMR ($399.95 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.19\left(\mathrm{~d},{ }^{2} J_{\text {PH }}=11.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{PMe}_{3}\right), 2.71\left(\mathrm{~d},{ }^{4} J_{\mathrm{PH}}=1.9 \mathrm{~Hz}, 3 \mathrm{H}\right.$, NMe_{2}), $3.04\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=11.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{PH}}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.07\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PH}}=2.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NMe}_{2}\right), 3.67(\mathrm{~d}$, $\left.{ }^{2} J_{\text {нн }}=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.20\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.18-4.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right.$; obscured by the signal due to $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 4.27\left(\mathrm{td}, J^{\prime}=2.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.67\left(\mathrm{dt}, J^{\prime}=2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.15\left(\mathrm{dq}, J^{\prime}=2.6,1.3\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.02\left(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.16\left(\mathrm{brd}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.23(\mathrm{td}, J=7.5$,
$1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), $7.35\left(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 16.43(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{PC}}=32 \mathrm{~Hz}, \mathrm{PMe}_{3}\right), 48.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=2 \mathrm{~Hz}, \mathrm{NMe}_{2}\right), 51.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=2 \mathrm{~Hz}, \mathrm{NMe}_{2}\right), 60.42\left(\mathrm{~d}, J_{\mathrm{PC}}=3 \mathrm{~Hz}, \mathrm{CH}\right.$ $\mathrm{C}_{5} \mathrm{H}_{4}$), $65.69\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=2 \mathrm{~Hz}, \mathrm{NCH}_{2}\right.$), $66.11\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right), 67.36\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.35\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 69.57(\mathrm{~s}$, $\mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}$), $106.82\left(\mathrm{~d}, J_{\mathrm{PC}}=6 \mathrm{~Hz}\right.$, Cipso-N C $_{5} \mathrm{H}_{4}$), 121.36 ($\mathrm{s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}$), 126.44 ($\mathrm{s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}$), 129.48 (s , CH C ${ }_{6} \mathrm{H}_{4}$), $129.68\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right.$), $132.10\left(\mathrm{~s}, C^{\text {ipso-C C }}{ }_{6} \mathrm{H}_{4}\right.$), 145.11 (d, ${ }^{3} \mathrm{~J}_{\mathrm{PC}}=8 \mathrm{~Hz}, C^{\text {ipso-C C }}{ }_{6} \mathrm{H}_{4}$), 191.70 (d, ${ }^{2} J_{\mathrm{PC}}=3 \mathrm{~Hz}$, Cipso-Pd). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($161.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-4.2(\mathrm{~s})$. ESI+ MS: $m / z 527\left([\mathrm{M}-\mathrm{Cl}]^{+}\right)$. IR (DRIFTS, KBr): $v_{\max } 3096$ w, 3068 w, 3026 w, 3012 w, 2993 w, 2977 w, 2956 w, 2932 w, 2911 w, 2887 w, 2864 w, 2831 w, 1736 w, 1586 s, 1479 m, 1470 m, 1460 m, 1452 m, 1436 m, 1424 m, 1420 w, 1409 w, 1399 w, 1363 w, 1333 w, 1302 w, 1282 m, 1235 w, 1209 m, 1181 w, 1104 m, 1028 m, $1018 \mathrm{~m}, 1001 \mathrm{~s}, 968 \mathrm{~s}, 950 \mathrm{~s}, 931 \mathrm{~m}, 895 \mathrm{~m}, 880 \mathrm{~m}, 862 \mathrm{~m}, 841 \mathrm{~m}, 818 \mathrm{~m}, 804 \mathrm{~m}, 763 \mathrm{~m}$, 739 s, 712 w, 683 w, 660 w, 635 w, 610 w, 595 w, 571 m, 528 w, 501 s, 495 s, 461 w, 439 w cm¹. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClFeN}_{2} \mathrm{PPd}$ (563.19): C 49.05, H 5.37, N 4.95\%. Found: C 49.21, H 5.07, N 4.87\%.

Synthesis of 5a. A solution of complex 2a ($54 \mathrm{mg}, 0.10 \mathrm{mmol}$) in dichloromethane (7 mL) was added to isocyanoferrocene ($21 \mathrm{mg}, 0.10 \mathrm{mmol}$) dissolved in the same solvent (3 mL) and the mixture was stirred for 30 min , whereupon its colour changed from light orange to orange brown. Then, all volatiles were removed under reduced pressure and the crude product was purified by chromatography over silica gel using dichloromethane/methanol (20:1) as the eluent. The first orange band was collected and evaporated to give $\mathbf{5 a}$ as a brown solid. Yield: $64 \mathrm{mg}, 85 \%$. Crystals used for X-ray diffraction analysis were obtained from ethyl acetate/hexane.
${ }^{1} \mathrm{H}$ NMR ($399.95 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.68\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PH}}=1.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SMe}\right), 3.44\left(\mathrm{br} \mathrm{d}^{2}{ }^{2} \mathrm{JHH} \approx 13.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, SCH_{2}), $3.57\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right.$), $3.94\left(\mathrm{td}, J=2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 3.99(\mathrm{td}, J=2.6,1.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.15\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.40\left(\mathrm{dt}, J=2.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.72\left(\mathrm{br} \mathrm{d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 6.33 (br s, 1H, $\mathrm{C}_{5} \mathrm{H}_{4}$), 7.01-7.06 (m, 1H, $\mathrm{C}_{6} \mathrm{H}_{4}$), 7.10-7.17 (m, 2H, $\mathrm{C}_{6} \mathrm{H}_{4}$), 7.25-7.32 (m, 6H, PPh_{3}), 7.35-7.45 (m, 9H, PPh ${ }_{3}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.58 MHz, CDCl_{3}): $\delta 20.26(\mathrm{~s}, \mathrm{SMe}), 36.31\left(\mathrm{~s}, \mathrm{SCH}_{2}\right), 61.00$ (d, $J_{\mathrm{PC}}=1 \mathrm{~Hz}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}$), $66.36\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right.$), 67.17 ($\mathrm{s}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}$), $69.13\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 69.53\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $104.25\left(\mathrm{~d}, J_{\mathrm{PC}}=4 \mathrm{~Hz}\right.$, Cipso-N C $\left._{5} \mathrm{H}_{4}\right), 123.29\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 126.13\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.07\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=11 \mathrm{~Hz}\right.$, $\mathrm{CH}^{\text {meta }} \mathrm{PPh}_{3}$), $128.84\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right.$), $129.37\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right.$), $130.50\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PC}}=3 \mathrm{~Hz}, \mathrm{CH}\right.$ para PPh_{3}), 130.77
 $\left(\mathrm{d}, J_{\mathrm{PC}}=7 \mathrm{~Hz}, C^{\text {ipso- }} \mathrm{C}_{6} \mathrm{H}_{4}\right), 187.37\left(\mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{C}^{\text {ipso-Pd}) . ~}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(161.90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.3\right.$ (s). ESI+ MS: m/z 716 ([M - Cl]+). IR (DRIFTS, KBr): $v_{\max } 3088$ w, 3076 w, 3057 w, 3004 w, 2926 w, 1135 w, 1633 w, 1604 m, 1572 w, 1479 w, 1435 m, 1411 w, 1374 w, 1332 w, 1314 w, 1278 w, 1242 w, 1211 w, 1188 w, 1176 w, 1159 w, 1143 w, 1105 m, 1094 m, 1071 w, 1048 w, 1026 w, 999 w, 969 w, 930 w, 894 w, 870 w, 860 w, 829 w, 818 m, 810 m, 698 s, 670 w, 655 w, 628 w, 603 w, 574 w, 564 s, 529 s, 511 s, 494 m, 456 w, 438 w, 425 w cm¹. Anal. Calc. for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{ClFeNPPdS}$ (752.42): C 59.06, H 4.42, N 1.86\%. Found: C 59.25, H 4.71, N 2.03\%.

Synthesis of 5b. Complex $\mathbf{5 b}$ was prepared analogously from $\mathbf{2 b}$ ($44.4 \mathrm{mg}, 0.125 \mathrm{mmol}$) and isocyanoferrocene ($26.4 \mathrm{mg}, 0.125 \mathrm{mmol}$) in 9 mL of dichloromethane. The crude product was purified by chromatography over silica gel using dichloromethane/methanol (10:1) as the eluent. Yield: 64 mg (90\%), orange solid. Crystal used for structure determination was obtained from ethyl acetate/hexane.
${ }^{1}{ }^{H}$ NMR ($399.95 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.25\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=10.9 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{PMe}_{3}\right.$), 2.57 (br s, $3 \mathrm{H}, \mathrm{SMe}$), 3.45 (br d, ${ }^{3} J_{\mathrm{HH}} \approx 13 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}$), $3.54\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.2 \mathrm{~Hz}, \mathrm{SCH}_{2}\right.$), $4.20\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.20(\mathrm{dt}, J=2.5,1.2$ $\mathrm{Hz}, \mathrm{C}_{5} \mathrm{H}_{4}$; partly obscured by the $\mathrm{C}_{5} \mathrm{H}_{5}$ signal), $4.27\left(\mathrm{dt}, J=2.6,1.4 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.65(\mathrm{td}, J=2.6,1.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $6.10\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.01\left(\mathrm{br} \mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.14-7.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.29-$ $7.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.80\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=31 \mathrm{~Hz}, \mathrm{PMe}_{3}\right), 19.28(\mathrm{br} \mathrm{s}$, SMe), 36.07 ($\mathrm{s}, \mathrm{SCH}_{2}$), $59.54\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=2 \mathrm{~Hz}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right.$), $66.31\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right), 67.43\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.36$ ($\mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}$), $69.60\left(\mathrm{~s}, \mathrm{CH}_{5} \mathrm{H}_{4}\right), 106.14\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=6 \mathrm{~Hz}, \mathrm{C}^{\text {ipso }}-\mathrm{N} \mathrm{C}_{5} \mathrm{H}_{4}\right), 122.91\left(\mathrm{~s}, \mathrm{CH}_{6} \mathrm{H}_{4}\right), 126.25(\mathrm{~s}, \mathrm{CH}$
 $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 188.64\left(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}\right.$, Cipso-Pd). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($161.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-7.2(\mathrm{~s})$. ESI $+\mathrm{MS}: m / z 530$ ([M - CI] ${ }^{+}$). IR (DRIFTS, KBr): $v_{\text {max }} 3089 \mathrm{w}, 3065 \mathrm{~m}, 2917 \mathrm{w}, 1732 \mathrm{w}, 1596 \mathrm{~s}, 1476 \mathrm{~m}, 1453 \mathrm{w}, 1428$ m, 1416 m, 1332 w, 1315 w, 1286 m, 1280 m, 1243 w, 1211 m, 1179 m, 1155 w, 1105 w, 1036 w, 1023 w, 1003 w, 989 w, $957 \mathrm{~m}, 931 \mathrm{vs}, 893 \mathrm{~s}, 863 \mathrm{~m}, 855 \mathrm{~s}, 818 \mathrm{~s}, 759 \mathrm{~s}, 739 \mathrm{~m}, 706 \mathrm{~s}, 676 \mathrm{~m}, 657$ w, 626 m, 576 w, $508 \mathrm{~s}, 501 \mathrm{~s}, 482 \mathrm{~m}, 474 \mathrm{~m}, 444 \mathrm{w}, 433 \mathrm{w} \mathrm{cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{ClFeNPPdS}$ (566.21): C 46.67, H 4.81, N 2.47\%. Found: C 46.49, H 4.56, N 2.16\%.

Synthesis of 6a. An oven-dried reaction flask equipped with a gas inlet and a stirring bar was charged with complex $\mathbf{4 a}$ ($37.5 \mathrm{mg}, 0.050 \mathrm{mmol}$), flushed with argon and sealed with a rubber septum. The solid complex was dissolved in dry dichloromethane (5 mL) and solid [$\left.\mathrm{Me}_{3} \mathrm{O}\right]\left[\mathrm{BF}_{4}\right]$ ($8.1 \mathrm{mg}, 0.055 \mathrm{mmol}$) was added at once against an argon flow, whereupon the colour of the mixture changed gradually from orange to red. After stirring for 22 h , the reaction mixture was evaporated and the residue was purified by chromatography on a silica gel column using dichloromethane/methanol (20:1) as the eluent. The second (main) band was collected and evaporated, leaving 6a as a red solid ($34 \mathrm{mg}, 80 \%$). Crystals used for diffraction analysis were obtained from ethyl acetate/hexane.
${ }^{1} \mathrm{H}$ NMR ($399.95 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 2.80\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PH}}=2.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NMe}_{2}\right), 3.20\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PH}}=2.8 \mathrm{~Hz}, 3 \mathrm{H}\right.$, NMe_{2}), $3.37\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=12.4,{ }^{4} \mathrm{~J}_{\mathrm{PH}}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right), 3.44\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, NCH_{2}), $4.31\left(\mathrm{td}, J=2.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHC}_{5} \mathrm{H}_{4}\right), 4.39\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.43\left(\mathrm{td}, J=2.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{5} \mathrm{H}_{4}\right)$, $4.53\left(\mathrm{dt}, J=2.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{5} \mathrm{H}_{4}\right), 5.79\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.88(\mathrm{dq}, J=2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 7.31-7.58\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{PPh}_{3}+3 \mathrm{CH}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100.58 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 47.65\left(\mathrm{~s}, \mathrm{CH}_{3}-\right.$ $\mathrm{N}), 49.22\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=3 \mathrm{~Hz}, \mathrm{NMe}_{2}\right), 51.66\left(\mathrm{~d},{ }^{3} J_{\mathrm{PC}}=3 \mathrm{~Hz}, \mathrm{NMe}_{2}\right), 64.63\left(\mathrm{~d}, J_{\mathrm{PC}}=4 \mathrm{~Hz}, \mathrm{CH}_{5} \mathrm{H}_{4}\right), 66.15(\mathrm{~s}$, $\mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}$), $66.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=3 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 68.91\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.21\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right), 71.12\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 103.46$ ($\mathrm{s}, \mathrm{C}^{\text {ipso }}-\mathrm{N} \mathrm{C}_{5} \mathrm{H}_{4}$), $121.12\left(\mathrm{~s}, \mathrm{CH}_{6} \mathrm{H}_{4}\right), 128.81\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=54 \mathrm{~Hz}\right.$, Cipso PPh_{3}), $129.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=11 \mathrm{~Hz}\right.$,
$\mathrm{CH}^{\text {meta }} \mathrm{PPh}_{3}$), $129.82\left(\mathrm{~s}, C^{\text {ipso- }} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.31\left(\mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.50\left(\mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 131.52\left(\mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 132.28$ (d, ${ }^{4} J_{\mathrm{PC}}=3 \mathrm{~Hz}, \mathrm{CH}^{\text {para }} \mathrm{PPh}_{3}$), $134.53\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=11 \mathrm{~Hz}, \mathrm{CH}^{\text {ortho }} \mathrm{PPh}_{3}\right.$), $139.42\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=2 \mathrm{~Hz}, C^{\text {ipso- }} \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 227.46 (d, $J=2 \mathrm{~Hz}$, Cipso-Pd). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($161.90 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 25.1$ (s). ESI+ MS: m/z 763 ([M - $\left.\mathrm{BF}_{4}\right]^{+}$). IR (DRIFTS, KBr): $v_{\max } 3116 \mathrm{w}, 3077 \mathrm{w}, 3057 \mathrm{w}, 3035 \mathrm{w}, 2971 \mathrm{w}, 2917 \mathrm{w}, 2890 \mathrm{w}, 2865$ w, 2838 w, 1557 w, 1482 m, 1471 m, 1455 m, 1436 s, 1404 w, 1378 w, 1356 w, 1316 w, 1283 w, 1261 w, 1238 w, 1215 w, 1189 w, 1163 w, 1142 w, 1097 s, 1054 s, 1038 s, 1002 s, 984 m, 960 w, 902 w, 877 w, 838 m, 821 w, 755 s, 716 m, $707 \mathrm{~s}, 700 \mathrm{~s}, 694 \mathrm{~s}, 665 \mathrm{~m}, 532 \mathrm{~s}, 511 \mathrm{~s}, 497 \mathrm{~m}, 461 \mathrm{~m}$, $428 \mathrm{w} \mathrm{cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{BClF}_{4} \mathrm{FeN}_{2} \mathrm{PPd}$ (851.24): C 55.03, H 4.62, N 3.29\%. Found: C 54.61, H 4.75, N 3.04\%.

Synthesis of 6b. Compound 6b was obtained similarly from $\mathbf{4 b}$ ($56.3 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\left[\mathrm{Me}_{3} \mathrm{O}\right]\left[\mathrm{BF}_{4}\right](22.2 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dichloromethane $(7.5 \mathrm{~mL})$. Isolation as above afforded the complex as a red solid. Yield: 56 mg (84%). Crystals used for structure determination were obtained from chloroform/ethyl acetate.
${ }^{1} \mathrm{H}$ NMR ($399.95 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 1.25\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{PMe}_{3}\right), 2.66\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PH}}=2.5 \mathrm{~Hz}, 3 \mathrm{H}\right.$, NMe_{2}), $3.04\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PH}}=2.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NMe}_{2}\right), 3.29\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=12.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{PH}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.43(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{HH}}=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right), 4.45\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.60\left(\mathrm{td}, J=2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $4.65\left(\mathrm{td}, J=2.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.01\left(\mathrm{dt}, J=2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.49(\mathrm{dq}, J=2.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{4}$), $7.19\left(\mathrm{br} \mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$), $7.44\left(\mathrm{br} \mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$), $7.50(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz} \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.62\left(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100.58 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 15.85\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=\right.$ $37 \mathrm{~Hz}, \mathrm{PMe}_{3}$), $48.31\left(\mathrm{~s}, \mathrm{CH}_{3}-\mathrm{N}\right), 48.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=3 \mathrm{~Hz}, \mathrm{NMe}_{2}\right), 51.71\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=3 \mathrm{~Hz}, \mathrm{NMe}_{2}\right), 64.92(\mathrm{~d}$, $\left.J_{\mathrm{PC}}=5 \mathrm{~Hz}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right), 66.26\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right), 66.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=3 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 68.41\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.64(\mathrm{~s}, \mathrm{CH}$
 $\mathrm{C}_{6} \mathrm{H}_{4}$), $130.20\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.91\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 131.52\left(\mathrm{~s}, \mathrm{CH} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{4}\right), 139.98\left(\mathrm{~d}, J_{\mathrm{PC}}=2 \mathrm{~Hz}, C^{\text {ipso }}-\mathrm{C}\right.$ $\mathrm{C}_{6} \mathrm{H}_{4}$), $229.53\left(\mathrm{~d}, J_{\mathrm{PC}}=2 \mathrm{~Hz}\right.$, Cipso-Pd). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($161.90 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta-0.2$ (s). ESI+ MS: m / z 577 ([M - BF 4$]^{+}$). IR (DRIFTS, KBr): $v_{\max } 3009 \mathrm{w}, 2976 \mathrm{w}, 2911 \mathrm{w}, 1644 \mathrm{w}, 1553 \mathrm{w}, 1472 \mathrm{w}, 1455$ w, 1414 w, 1359 w, 1287 m, 1261 w, 1216 w, 1142 m, 1107 s, 1062 s, 1036 s, 1004 m, 961 s, 901 w, 860 w, 842 m, 770 m, 738 m, 717 w, 678 w, 665 w, 639 w, 624 w, 612 w, 598 w, 521 m, 498 m, $484 \mathrm{~m}, 458 \mathrm{~m}, 447 \mathrm{~m}, 432 \mathrm{w}$. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{BClF}_{4} \mathrm{FeN}_{2} \operatorname{PPd}(665.04): \mathrm{C} 43.35, \mathrm{H} 5.00, \mathrm{~N}$ 4.21\%. Found: C 43.60, H 4.81, N 3.89\%.

Synthesis of 7a. Complex 7a was similarly prepared and isolated starting from 5a (37.6 $\mathrm{mg}, 0.050 \mathrm{mmol}$) and $\left[\mathrm{Me}_{3} \mathrm{O}\right]\left[\mathrm{BF}_{4}\right]$ ($8.1 \mathrm{mg}, 0.055 \mathrm{mmol}$) in 5 mL of dichloromethane. Yield: 32 mg (75\%), red solid. X-ray quality crystals were grown from ethyl acetate/hexane.
${ }^{1} \mathrm{H}$ NMR ($399.95 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 2.66$ (br s, $3 \mathrm{H}, \mathrm{SMe}$), $3.30\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right.$), 3.47 (d, $J_{\mathrm{PH}}=0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}$), 3.82 (very br s, $1 \mathrm{H}, \mathrm{SCH}_{2}$), $4.29\left(\mathrm{td}, \mathrm{J}=2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right.$), $4.39(\mathrm{~s}$, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), 4.43-4.46 (m, $1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.55\left(\mathrm{dt}, J=2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.62\left(\mathrm{br} \mathrm{d}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{C}_{6} \mathrm{H}_{4}$), $6.65\left(\mathrm{brs}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.28-7.59\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{PPh}_{3}\right.$ and $3 \times \mathrm{CH}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) \cdot{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100.58 \mathrm{MHz}$,
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 20.87$ (br s, $3 \mathrm{H}, \mathrm{SMe}$), $36.87\left(\mathrm{br} \mathrm{s}, \mathrm{SCH}_{2}\right), 48.00\left(\mathrm{~s}, \mathrm{CH}_{3}-\mathrm{N}\right), 63.98\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=3 \mathrm{~Hz}, \mathrm{CH}_{5} \mathrm{H}_{4}\right)$,
 $121.60\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.44\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=53 \mathrm{~Hz}\right.$, Cipso $^{\text {ipPh }}{ }_{3}$), $129.21\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=11 \mathrm{~Hz}, \mathrm{CH}^{\text {meta }} \mathrm{PPh}_{3}\right.$), 129.94 ($\mathrm{s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}$), $130.10\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right.$), 132.03 ($\mathrm{s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}$), 132.41 ($\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{PC}}=3 \mathrm{~Hz}, \mathrm{CH}^{\text {para }} \mathrm{PPh}_{3}$), 134.51
 to $\mathrm{C}_{6} \mathrm{H}_{4}$ was not found. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(161.90 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 24.8(\mathrm{~s})$. ESI+ MS: $m / z 768$ ([M $\left.\mathrm{BF}_{4}\right]^{+}$). IR (DRIFTS, KBr): $v_{\max } 3058 \mathrm{w}, 2924 \mathrm{w}, 2854 \mathrm{w}, 1553 \mathrm{w}, 1482 \mathrm{w}, 1436 \mathrm{~m}, 1414 \mathrm{w}, 1314 \mathrm{w}$, 1283 w, 1262 w, 1244 w, 1209 w, 1187 w, 1162 w, 1096 s, 1058 s, 1001 m, 898 w, 826 w, 751 m, 709 s, 694 s, 662 w, 529 s, 509 s, 495 s, 463 m, 429 w cm$^{-1}$. Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{BClF}_{4} \mathrm{FeNPdS}$ (854.26): C 53.43, H 4.25, N 1.64\%. Found: C 53.87, H 4.57, N 1.45\%.

Synthesis of $\mathbf{7 b}$. An analogous reaction of $\mathbf{5 b}(56.6 \mathrm{mg}, 0.10 \mathrm{mmol})$ with $\left[\mathrm{Me}_{3} \mathrm{O}\right]\left[\mathrm{BF}_{4}\right]$ (22.2 $\mathrm{mg}, 0.15 \mathrm{mmol}$) in 7.5 mL of dichloromethane and purification as described above produced $\mathbf{7 b}$ as a red solid. Yield: $60 \mathrm{mg}(90 \%)$. Crystals suitable for structure determination were grown from chloroform/ethyl acetate
${ }^{1} \mathrm{H}$ NMR ($399.95 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 1.30\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=12.0 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{PMe}_{3}\right.$), 2.53 (br s, $3 \mathrm{H}, \mathrm{SMe}$), $3.30\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.76\left(\right.$ very br s, $\left.1 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right), 4.44\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$, $4.58\left(\mathrm{td}, J=2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.62\left(\mathrm{td}, J=2.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.25(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}$), $7.16\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.43-7.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.56-7.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.58 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 15.23\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=35 \mathrm{~Hz}, \mathrm{PMe}_{3}\right.$), $19.83(\mathrm{br} \mathrm{s}, \mathrm{SMe}), 36.66\left(\mathrm{br} \mathrm{s}, \mathrm{SCH}_{2}\right)$, $48.69\left(\mathrm{~s}, \mathrm{CH}_{3}-\mathrm{N}\right), 64.40\left(\mathrm{~d}, J_{\mathrm{PC}}=3 \mathrm{~Hz}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right), 66.07\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right), 68.45\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.51(\mathrm{~s}, \mathrm{CH}$ $\mathrm{C}_{5} \mathrm{H}_{4}$), 71.21 ($\mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}$), $105.21\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=2 \mathrm{~Hz}, \mathrm{Cipso}^{\mathrm{N}} \mathrm{C}_{5} \mathrm{H}_{4}\right.$), $122.16\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right.$), $129.90\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}\right)$,
 due to $\mathrm{C}_{6} \mathrm{H}_{4}$ was not found. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(161.90 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-1.5$ (s). ESI+ MS: $m / z 582$ ([M $\left.\mathrm{BF}_{4}\right]^{+}$). IR (DRIFTS, KBr): $v_{\max } 3112 \mathrm{w}, 3064 \mathrm{w}, 3007 \mathrm{w}, 2916 \mathrm{w}, 1560 \mathrm{~m}, 1475 \mathrm{w}, 1450 \mathrm{w}, 1417 \mathrm{~m}$, 1295 m, 1285 m, 1261 m, 1242 w, 1207 w, 1105 s, 1078 s, $1058 \mathrm{~s}, 1035 \mathrm{~s}, 990 \mathrm{~m}, 958 \mathrm{~s}, 905 \mathrm{~m}$, $897 \mathrm{~m}, 871 \mathrm{~m}, 822 \mathrm{~m}, 799 \mathrm{w}, 772 \mathrm{~m}, 766 \mathrm{~m}, 753 \mathrm{~m}, 711 \mathrm{~m}, 679 \mathrm{~m}, 666 \mathrm{~m}, 572 \mathrm{w}, 520 \mathrm{~m}, 503 \mathrm{~m}$, $485 \mathrm{~m}, 463 \mathrm{~m}, 450 \mathrm{~m} \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{BClF}_{4} \mathrm{FeNPPdS} \cdot 0.2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (685.04): C 40.67, H 4.48, N 2.05\%. Found: C 40.75, H 4.34, N 1.93\%.

Synthesis of 8. Method A. Complex $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right](20.0 \mathrm{mg}, 0.040 \mathrm{mmol})$ was dissolved in dichloromethane (1.0 mL) and added to $\mathrm{Ag}\left[\mathrm{BF}_{4}\right]$ ($7.8 \mathrm{mg}, 0.040 \mathrm{mmol}$) dissolved in $\mathrm{MeOH}(1.0$ mL). The mixture was stirred for 30 min and filtered through a PTFE syringe filter ($0.45 \mu \mathrm{~m}$ porosity) to remove a white precipitate (AgCl). The filtrate was added to solid $\mathbf{6 a}(30.0 \mathrm{mg}, 0.040$ mmol) and the reaction mixture was stirred for 16 hours and evaporated under vacuum. The solid residue was taken up with dichloromethane:methanol (50:1) and transferred onto the top of a short silica gel column. Elution with the same solvent mixture first removed a red band containing unidentified phosphine and palladium-containing side products, which were discarded. The
following purple band was collected and evaporated, leaving 8 as a purple amorphous solid (9.0 $\mathrm{mg}, 52 \%$). The product was crystallised from chloroform/hexane to give deep purple crystals, which were decanted, washed with pentane, and dried under vacuum (yield: $3.9 \mathrm{mg}, 23 \%$).
${ }^{1} \mathrm{H}$ NMR ($399.95 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.47\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NMe}_{2}\right), 4.29\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.41\left(\mathrm{vt}, J^{\prime}=1.8 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.55\left(\mathrm{vt}, J^{\prime}=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 7.38-7.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.57(\mathrm{dt}, J=$ $\left.\left.7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.69\left(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.02 \mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 52.38\left(\mathrm{~s}, \mathrm{NMe}_{2}\right), 64.28\left(\mathrm{~s}, \mathrm{CH} \mathrm{C}_{5} \mathrm{H}_{4}\right), 66.31\left(\mathrm{~s}, \mathrm{NCH}_{2}\right), 67.93\left(\mathrm{~s}, \mathrm{CH}_{5} \mathrm{H}_{4}\right)$, 70.46 (s, $\mathrm{C}_{5} \mathrm{H}_{5}$), 97.8 ($C^{\text {ipso }}-\mathrm{N} \mathrm{C}_{5} \mathrm{H}_{4}$, identified in ${ }^{13} \mathrm{C}$ HMBC spectrum), $121.86\left(C^{\text {ipso }} \mathrm{CC}_{6} \mathrm{H}_{4}\right.$, identified in HMBC spectrum), 125.29 ($\mathrm{s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}$), 126.32 ($\mathrm{s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}$), 129.81 ($\mathrm{s}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{4}$), 135.21 (s, CH
 KBr): $v_{\text {max }} 3081$ br w, 2926 w, $2855 \mathrm{w}, 1690 \mathrm{w}, 1604 \mathrm{w}, 1590 \mathrm{w}, 1466 \mathrm{~m}, 1438 \mathrm{~m}, 1410 \mathrm{w}, 1311$ w, 1289 w, 1267 w, 1182 w, 1163 w, 1058 br s, 1004 m, 947 w, 861 w, 824 m, 777 m, 752 m, 724 $\mathrm{m}, 696 \mathrm{~m}, 663 \mathrm{w}, 616 \mathrm{w}, 541 \mathrm{~s}, 521 \mathrm{~m}, 498 \mathrm{~s}, 472 \mathrm{~m} \mathrm{~cm}^{-1}$. Analysis Calc. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{BF}_{4} \mathrm{Fe} \cdot 0.1 \mathrm{CHCl}_{3}$ (443.98): C 54.38, H 4.79, N 6.31\%. Found: C 54.51, H 4.47, N 5.76\%.

Method B. Solid $\left.\mathrm{Ag}^{2} \mathrm{BF}_{4}\right]$ ($4.9 \mathrm{mg}, 0.025 \mathrm{mmol}$) and $\mathbf{6 a}$ ($18.7 \mathrm{mg}, 0.025 \mathrm{mmol}$) were dissolved in $\mathrm{CDCl}_{3}(1.0 \mathrm{~mL})$ and the solution was stirred for 1 h . The resulting suspension was filtered through a PTFE syringe filter, adding Celite and the filtrate was analysed by NMR spectroscopy, which revealed an 87% conversion of starting material into 8. The solution was evaporated and the residue was purified by chromatography as described above to give $\mathbf{8}$ in 70% yield (7.6 mg).

Method C. Solid $\mathrm{NH}_{4}\left[\mathrm{BF}_{4}\right]$ ($2.0 \mathrm{mg}, 0.019 \mathrm{mmol}, 1.5$ equiv.) and $\mathbf{6 a}$ ($9.4 \mathrm{mg}, 0.0125 \mathrm{mmol}$) were dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH (1.0 mL each). The solution was stirred for 48 h and evaporated under vacuum. The solid residue was dissolved in $\mathrm{CDCl}_{3}(0.7 \mathrm{~mL})$ and analysed by NMR spectroscopy. The yield of $\mathbf{8}$ was 26% (conversion $\approx 40 \%$). Note: a similar reaction with $\mathrm{NH}_{4}\left[\mathrm{BF}_{4}\right]$ in pure dichloromethane was probably hampered by the poor solubility of the inorganic salt. After 24 h , it resulted in approximately 20% conversion of the starting material but the signals due to $\mathbf{8}$ were not observed.

X-ray crystallography

Full-sphere diffraction data ($\pm h \pm k \pm l, \theta_{\max }=26-30^{\circ}$) were collected on Bruker APEX-II CCD (4a, 5a, and $\mathbf{6 a} \cdot \mathrm{CHCl}_{3}$) or a Bruker D8 VENTURE Kappa Duo diffractometer (other compounds), equipped with a Cryostream Cooler (Oxford Cryosystems) at 120 or 150 K. Mo K α radiation ($\lambda=$ $0.71073 \AA$) was used in all cases. The structures were solved by direct methods (SHELXT-20145) and subsequently refined by a full-matrix least-squares routine based on F^{2} (SHELXL-20176). All nonhydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were included in their theoretical positions and refined as riding atoms with their $U_{\text {iso }}(\mathrm{H})$ set to a multiple of $U_{\text {eq }}(\mathrm{C})$ of their bonding carbon atom (1.2 times for CH and CH_{2} groups and 1.5 times for methyl groups). The OH hydrogens in the structure of $\mathbf{4 b} \cdot 0.35 \mathrm{H}_{2} \mathrm{O}$ were identified on the electron density map and refined similarly. The location of the hydrogen atoms was facilitated because two water molecules, viz. the molecule and its image generated by crystallographic inversion, form hydrogen brides towards imine nitrogen in a centrosymmetric pair of molecules 2 in the structure (see Figure S4). In addition, the unsubstituted cyclopentadienyl ring in molecule 2 was disordered and had to be refined over two positions mutually rotated along the axis of the ferrocene core. The refined occupancies were 53:47.

The thioether group (SMe) in the structure of $\mathbf{5 a}$ was also disordered and was refined over two, closely separated positions in a 74:26 ratio. A different type of disorder of the SMe group was observed in $\mathbf{7 b}$, where pendant thiomethyl moiety was refined over two positions (83:17) representing approximately mirror images with respect to the coordination plane, thereby corresponding to different stereoisomers (S_{S} and R_{S}).

All geometric parameters and structural diagrams were obtained using the PLATON program. ${ }^{7}$ Relevant crystallographic data and structure refinement parameters are presented in Table S1. The numerical values were rounded to one decimal place with respect to their estimated standard deviations (ESDs).

Table S1. Selected crystallographic data and structure refinement parameters. ${ }^{\text {a }}$

Compound	3	4a
Formula	$\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{ClP}_{2} \mathrm{PdS}$	$\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{ClFeN}_{2} \mathrm{PPd}$
M	431.20	749.36
Crystal system	$P 2_{1} / c$ (no.14)	$P 2_{1} / \mathrm{c}$ (no. 14)
Space group	monoclinic	monoclinic
T [K]	120(2)	150(2)
$a[\AA]$	16.2283(9)	21.4864(7)
$b[\AA ̊]$	10.6693(5)	15.0931(5)
$c[\AA ̊]$	11.2552(6)	10.2377(3)
$\alpha\left[^{\circ}\right]$	90	90
$\beta\left[{ }^{\circ}\right]$	100.130(2)	103.377(1)
$\gamma\left[{ }^{\circ}\right]$	90	90
$V[\AA]^{3}$	1918.4(2)	3230.0(2)
Z	4	4
$F(000)$	880	1528
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) mm^{-1}]	1.369	1.169
Diffrns collected	20426	32457
Independent diffrns	4388	7429
Observed ${ }^{\text {a }}$ diffrns	4313	5915
$R_{\text {int }}{ }^{\text {[}}$ [\%]	1.79	4.42
No. of parameters	180	399
R^{b} obsd diffrns [\%]	1.69	3.33
$R, w R^{b}$ all data [\%]	1.72, 4.26	5.02, 7.12
$\Delta \rho\left[\mathrm{e} \AA^{-3}\right]$	0.535, -0.542	0.754, -0.556

${ }^{a}$ Diffractions with $I>2 \sigma(I) .{ }^{b}$ Definitions: $R_{\text {int }}=\Sigma \mid F_{0}{ }^{2}-F_{0}{ }^{2}$ (mean) $\mid / \Sigma F_{0}{ }^{2}$, where $F_{0}{ }^{2}$ (mean) is the average intensity of symmetry-equivalent diffractions. $R=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|, \mathrm{w} R=\left[\Sigma\left\{\mathrm{w}\left(F_{0}{ }^{2}\right.\right.\right.$ $\left.\left.-F_{\mathrm{c}^{2}}{ }^{2}{ }^{2}\right\} / \Sigma \mathrm{w}\left(F_{0}{ }^{2}\right)^{2}\right]^{1 / 2}$.

Table S1 continued

Compound	$\mathbf{4 b} \cdot 0.35 \mathrm{H}_{2} \mathrm{O}$	5a
Formula	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClFeN}_{2} \mathrm{PPd} \cdot 0.35 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{ClFeNPPdS}$
M	569.60	752.37
Crystal system	P-1 (no. 2)	$P 2_{1} / c$ (no. 14)
Space group	triclinic	monoclinic
$T[\mathrm{~K}]$	150(2)	120(2)
$a[\AA]$	10.3488(5)	21.183(1)
$b[A ̊]$	13.7820(7)	15.1442(9)
$c[A ̊]$	17.1619(9)	10.0918(6)
$\alpha\left[{ }^{\circ}\right]$	101.004(2)	90
$\beta\left[{ }^{\circ}\right]$	95.440(2)	102.060(2)
$\gamma\left[{ }^{\circ}\right]$	96.566(2)	90
$V[A ̊]^{3}$	2369.9(2)	3165.9(3)
Z	4	4
$F(000)$	1158	1528
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) [mm^{-1}]	1.565	1.255
Diffrns collected	46893	118331
Independent diffrns	10857	9256
Observed ${ }^{a}$ diffrns	10235	8826
$R_{\text {int }}{ }^{\text {[}}$ [\%]	1.99	0.97
No. of parameters	535	398
R^{b} obsd diffrns [\%]	2.08	2.03
$R, w R^{b}$ all data [\%]	2.25, 5.10	2.18, 4.95
$\Delta \rho\left[\mathrm{e}^{\circ}-3\right]$	0.618, -0.794	0.646, -0.535

Table S1 continued

Compound	5b	$\mathbf{6 a} \cdot \mathrm{CHCl}_{3}$
Formula	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{ClFeNPPdS}$	$\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{BClF}_{4} \mathrm{FeN}{ }_{2} \mathrm{PPd} \cdot \mathrm{CHCl}_{3}$
M	566.17	970.57
Crystal system	$P 2_{1} / n($ no. 14$)$	$P 2_{1} / C$ (no. 14)
Space group	monoclinic	monoclinic
$T[\mathrm{~K}]$	150(2)	150(2)
$a[\AA ̊]$	8.9162(5)	19.1161(7)
$b[\AA]$	17.4114(9)	11.5322(4)
$c[\AA$]	15.0731(7)	20.5774(8)
$\alpha\left[{ }^{\circ}\right]$	90	90
$\beta\left[{ }^{\circ}\right]$	104.774(2)	116.782(1)
$\gamma\left[{ }^{\circ}\right]$	90	90
$V[\AA]^{3}$	2262.6(2)	4049.7(3)
Z	4	4
$F(000)$	1144	1960
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) [mm^{-1}]	1.725	1.157
Diffrns collected	18721	29932
Independent diffrns	4427	9295
Observed ${ }^{a}$ diffrns	4165	7464
$R_{\text {int }}{ }^{\text {b }}$ [\%]	1.67	4.06
No. of parameters	257	490
R^{b} obsd diffrns [\%]	2.22	3.56
$R, w R^{b}$ all data [\%]	2.41, 5.45	4.96, 9.03
$\Delta \rho\left[\mathrm{A}^{-3}\right]$	1.763, -0.464	1.613,-1.145

Table S1 continued

Compound	6b	7a
Formula	$\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{BClF}_{4} \mathrm{FeN}_{2} \mathrm{PPd}$	$\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{BClF} \mathrm{F}_{4} \mathrm{FeNPPdS}$
M	665.00	854.22
Crystal system	$P 2{ }_{1} / C$ (no. 14)	Pbca (no. 61)
Space group	monoclinic	orthorombic
T [K]	120(2)	120(2)
$a[\AA$]	14.8935(4)	18.3903(7)
$b[\AA]$	10.3396(3)	17.3243(9)
$c[\AA]$	17.0483(5)	21.845(1)
$\alpha\left[{ }^{\circ}\right]$	90	90
$\beta\left[口^{\circ}\right]$	95.193(1)	90
$\gamma\left[{ }^{\circ}\right]$	90	90
$V[A]{ }^{3}$	2614.5(1)	6959.9(6)
Z	4	8
$F(000)$	1344	3456
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) [mm^{-1}]	1.451	1.168
Diffrns collected	28290	55408
Independent diffrns	5991	7985
Observed ${ }^{a}$ diffrns	5705	5675
$R_{\text {int }}{ }^{\text {b }}$ [\%]	1.67	6.04
No. of parameters	322	444
R^{b} obsd diffrns [\%]	2.29	4.16
$R, w R^{b}$ all data [\%]	2.43, 6.10	6.71, 11.95
$\Delta \rho\left[\mathrm{e}^{\circ}-3\right]$	1.554, -0.686	1.408, -1.070

Table S1 continued

Compound	7b	8
Formula	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{BClF}_{4} \mathrm{FeNPPdS}$	$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BF}_{4} \mathrm{FeN}_{2}$
M	668.02	432.05
Crystal system	$P 2_{1} / C$ (no. 14)	C2/c (no.15)
Space group	monoclinic	monoclinic
T [K]	120(2)	120(2)
$a[\AA]$	14.7586(6)	36.1427(7)
$b[A]$	10.3653(4)	7.3110(2)
$c[\AA]$	17.0751(6)	14.5300(4)
$\alpha\left[{ }^{\circ}\right]$	90	90
$\beta\left[{ }^{\circ}\right]$	97.684(1)	101.740(1)
$\gamma\left[{ }^{\circ}\right]$	90	90
$V[\AA]^{3}$	2588.7(2)	3759.1(2)
Z	4	8
$F(000)$	1344	1776
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) [mm^{-1}]	1.543	0.848
Diffrns collected	60275	30940
Independent diffrns	5951	4317
Observed ${ }^{a}$ diffrns	5683	4049
$R_{\text {int }}{ }^{\text {[}}$ [\%]	4.47	2.21
No. of parameters	332	255
R^{b} obsd diffrns [\%]	4.49	3.19
$R, w R^{b}$ all data [\%]	4.66, 10.50	3.39, 8.26
$\Delta \rho\left[\mathrm{e}^{\circ}-3\right]$	1.735, -1.477	0.696, -0.503

Figure S1 PLATON plot of the molecular structure of trans-3. Displacement ellipsoids enclose the 30% probability level. Selected distances and angles (in \AA and deg): Pd1-P1 2.3033(5), Pd1-P2 2.3023(5), Pd1-Cl1 2.3925(4), Pd1-C1 2.009(1), P1-Pd1-Cl1 91.40(1), P1-Pd1-C1 89.87(4), P2-Pd1-Cl1 89.25(1) and P1-Pd1-C1 89.60(4).

Figure S2 PLATON plot of the molecular structure of 4a showing displacement ellipsoids at the 30\% probability level

Figure S3 PLATON plot of the molecular structure of $\mathbf{4 b} \cdot \mathbf{0 . 3 5 \mathrm { H } _ { 2 } \mathrm { O }}$ showing displacement ellipsoids at the 30% probability level

Figure S4 Least-squares overlap of the two crystallographically independent complex molecules in the structure of $\mathbf{4 b} \cdot 0.35 \mathrm{H}_{2} \mathrm{O}$

Figure S5 Hydrogen bond interactions in the structure of $\mathbf{4 b} \cdot 0.35 \mathrm{H}_{2} \mathrm{O}$ (for clarity, only one orientation of the disordered cyclopentadienyl ring is shown). Hydrogen bond parameters: 01W$\mathrm{H} 1 \mathrm{~W} \cdots \mathrm{~N} 3=2.921(2) \AA$, angle at $\mathrm{H} 1 \mathrm{~W}=177^{\circ}$; 01W-H2W $\cdots \mathrm{N} 3^{\prime}=2.998(2) \AA$, angle at $\mathrm{H} 2 \mathrm{~W}=167^{\circ}$.

Figure S6 PLATON plot of the molecular structure of 5a showing displacement ellipsoids at the 30% probability level

Figure S7 PLATON plot of the molecular structure of $\mathbf{5 b}$ showing displacement ellipsoids at the 30% probability level

Figure S8 PLATON plot of the molecular structure of $\mathbf{6 a} \cdot \mathrm{CHCl}_{3}$ showing displacement ellipsoids at the 30% probability level

Figure S9 PLATON plot of the molecular structure of $\mathbf{6 b}$ showing displacement ellipsoids at the 30\% probability level

Figure S10 PLATON plot of the molecular structure of 7a showing displacement ellipsoids at the 30% probability level

Figure S11 PLATON plot of the molecular structure of $\mathbf{7 b}$ showing displacement ellipsoids at the 30% probability level

Figure S12 PLATON plot of the molecular structure of $\mathbf{8}$ showing displacement ellipsoids at the 30\% probability level

Cyclic voltammograms for 4-7

Figure S13 Cyclic voltammograms of the imidoyl complexes $\mathbf{4}$ and $\mathbf{5}$ recorded at a glassy carbon electrode in dichloromethane containing $\mathrm{Bu}_{4} \mathrm{~N}^{2}\left[\mathrm{PF}_{6}\right]$ as the supporting electrolyte and $100 \mathrm{mV} \mathrm{s}^{-1}$ scan rate. The second scan are shown by dashed lines.

Figure S14 Cyclic voltammograms of the carbene complexes $\mathbf{6}$ and $\mathbf{7}$ recorded at a glassy carbon electrode in dichloromethane containing $\mathrm{Bu}_{4} \mathrm{~N}\left[\mathrm{PF}_{6}\right]$ as the supporting electrolyte and $100 \mathrm{mV} \mathrm{s}^{-1}$ scan rate. The second scans are shown by dashed lines and initial scan directions are indicated by arrows.

DFT calculations

Theoretical calculations were performed using the Gaussian 16 program package. 8 If available, the geometry optimizations were started from atomic coordinates determined by X-ray diffraction analysis. All the calculations were done using B3LYP9 density functional in conjunction with the def2-TZVPP ${ }^{10}$ basis set with added Grimme's D3 dispersion correction with Becke-Johnson damping. ${ }^{11}$ Stuttgart effective core potential ${ }^{12}$ was used for palladium. Orbital composition analysis based on the Natural Atomic Orbitals (NAO) ${ }^{13}$ was performed using the Multiwfn software package (version 3.8). ${ }^{14}$ Molecular orbitals were visualized using the Avogadro programme. ${ }^{15}$ Intrinsic bond orbital (IBO) analysis and visualization of the obtained orbitals were performed using the IboView software. ${ }^{16}$

Figure 15 Selected intrinsic bond orbitals (IBOs) of $\mathbf{4 a}$ (values in parentheses indicate the fraction of σ and π bonding electrons assigned to the individual atoms; lp = lone electron pair)

Figure 16 Selected intrinsic bond orbitals (IBOs) of 6a (values in parentheses indicate the fraction of σ and π bonding electrons assigned to the individual atoms)

Copies of the NMR and MS spectra

(Note: solvent signals in the NMR spectra are denoted by an asterisk.)

Figure S17 ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1a

Figure S18 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1a

Figure S19 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1a

Figure S20 ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 b}$

Figure S21 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 b}$

Figure S22 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 b}$

Figure S23 ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 a}$

Figure S24 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 a}$

Figure S25 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 a}$

Figure S26 ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 b}$

Figure S27 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 b}$

Figure S28 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 b}$

Figure S29 ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of trans-3

Figure S30 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of trans-3

Figure S31 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of trans-3

Figure $\mathbf{S 3 2}{ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 a}$

Figure S33 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 a}$

Figure S34 ${ }^{31 \mathrm{P}}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 a}$

Figure S35 ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 b}$

Figure S36 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 b}$

Figure S37 ${ }^{31} \mathrm{P}\{1 \mathrm{H}\}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 b}$

Figure $\mathbf{S 3 8}{ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 a}$

Figure S39 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 a}$

Figure S40 ${ }^{31} \mathrm{P}\{1 \mathrm{H}\}$ NMR spectrum $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 a}$

Figure $\mathbf{S 4 1}{ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 b}$

Figure S42 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 b}$

Figure S43 ${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 b}$

Figure $\mathbf{S 4 4}{ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{6 a}$

Figure S45 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{6 a}$

Figure S46 ${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of 6a

Figure $\mathbf{S 4 7}{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of $\mathbf{6 b}$

Figure S48 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{6 b}$

Figure S49 ${ }^{31}{ }^{2}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{6 b}$

Figure $\mathbf{S 5 0}{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of 7a

Figure S51 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{7 a}$

Figure S52 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of 7a (the sharp "signals" are spikes)

Figure S53 ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of $\mathbf{7 b}$

Figure S54 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{7 b}$

Figure S55 ${ }^{31 \mathrm{P}}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of $\mathbf{7 b}$

Figure $\mathbf{S 5 6}{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8}$

Figure S57 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{8}$

References

 M. V. Barybin, T. C. Holovics, S. F. Deplazes, G. H. Lushington, D. R. Powell and M. Toriyama, J. Am. Chem. Soc., 2002, 124, 13668.F. Barrière and W. E. Geiger, J. Am. Chem. Soc., 2006, 128, 3980.
A. Mentes, R. D. Kemmitt, J. Fawcett and D. R. Russell, J. Mol. Struct., 2004, 693, 241.
G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3.
G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3.

7 a) A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7; b) A. L. Spek, Acta Crystallogr. D: Biol. Crystallogr., 2009, 65, 148.

8 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Revision C.01, Gaussian Inc., Wallingford, CT, 2016.
a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; b) C. Lee, W. Yang and R. G. Parr, Phys.Rev.B: Condens. Matter Mater. Phys., 1988, 37, 785.
a) F. Weigend, F. Furche and R. Ahlrichs, J. Chem. Phys., 2003, 119, 12753; b) F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.

11 a) A. D. Becke and E. R. Johnson, J. Chem. Phys., 2005, 123, 154101; b) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104; c) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456.
D. Andrae, U. Haeussermann, M. Dolg, H. Stoll and H. Preuss, Theor. Chim. Acta, 1990, 77, 123.
T. Lu and F. Chen, Acta Chim. Sin., 2011, 69, 2393.
T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580.
a) Avogadro: An Open-Source Molecular Builder and Visualization Tool, version 1.2.0, http://avogadro.openmolecules.net/; b) M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, J. Cheminf., 2012, 4, 17.

16 a) G. Knizia, IboView-A program for chemical analysis, http://www.iboview.org; b) G. Knizia, J. Chem. Theory Comput., 2013, 9, 4834; c) G. Knizia, J. E. M. N. Klein, Angew. Chem., Int. Ed., 2015, 54, 5518.

