Electronic Supporting Information

The gas-selective Zn-MOF exhibits selective sensing of Fe³⁺ ions by doping with Tb³⁺

Zhi-Gang Wang,*,a,b Tao Ding, b Jie Fei,*,a

^a School of Materials, Northwestern Polytechnical University, Xi'an 710048, P. R China.

^b School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R China.

Table S1 Selected Bond Length (Å) and Angles (°) for Zn-MOF and Tb@Zn-MOF

Zn-MOF			
Zn(1)-O(3)#1	2.072(6)	Zn(1)-O(3)#2	2.072(6)
Zn(1)-O(5)#2	2.028(6)	Zn(1)-O(5)#1	2.028(6)
Zn(1)-N(1)	1.969(8)	Zn(2)-N(3)	1.998(6)
Zn(2)-N(6)#3	2.013(6)	Zn(2)-N(3)	1.998(6)
Zn(2)-O(7)	2.004(9)	Zn(2)-O(1)	2.004(9)
Zn(3)-O(4)	2.002(6)	Zn(3)-O(4)#4	2.002(6)
Zn(3)-O(6)	2.096(6)	Zn(3)-O(6)#4	2.096(6)
Zn(3)-N(4)	1.976(9)	O(5)#1-Zn(1)-O(3)#2	88.5(3)
O(5)#2-Zn(1)-O(3)#2	87.5(3)	O(5)#1-Zn(1)-O(3)#1	87.5(3)
O(5)#1-Zn(1)-O(3)#1	87.8(3)	O(5)#2-Zn(1)-O(3)#2	87.8(3)
O(5)#2-Zn(1)-O(3)#1	88.5(3)	O(5)#2-Zn(1)-O(5)#1	158.7(3)
N(1)-Zn(1)-O(3)#2	100.71(16)	N(1)-Zn(1)-O(3)#1	100.71(16)
N(1)-Zn(1)-O(5)#1	100.64(15)	N(1)-Zn(1)-O(5)#2	100.64(15)

N(3)-Zn(2)-N(6)#3	106.7(3)	N(3)-Zn(2)-O(1)	103.2(3)
N(3)-Zn(2)-O(7)	109.9(3)	O(1)-Zn(2)-N(6)#3	109.9(3)
O(1)-Zn(2)-O(7)	123.0(4)	O(7)-Zn(2)-N(6)#3	103.4(3)
O(4)-Zn(3)-O(6)#4	158.8(3)	O(4)#4-Zn(3)-O(6)	87.6(3)
O(4)-Zn(3)-O(6)#4	87.6(3)	O(4)#4-Zn(3)-O(6)#4	88.5(3)
O(4)-Zn(3)-O6	88.5(3)	O(6)#4-Zn(3)-O(6)	158.3(3)
N(4)-Zn(3)-O(4)#4	100.60(16)	N(4)-Zn(3)-O(4)	100.60(16)
N(4)-Zn(3)-O(6)	100.84(15)	N(4)-Zn(3)-O(6)#4	100.84(16)

Symmetrical codes: #1 -x+1/2,-y+3/2,-z+1/2;#2 x-1/2,y,-z+1/2;#3 x-1/2,-y+3/2,-z+1;#4 -x+1,y+3/2,z+0;#5 -x+0,-y+3/2,z+0;#6 -x+1/2,y-1/2,z;#7 x+1/2,-y+3/2,-z+1;#8 -x+1/2,y+1/2,z.

Tb@Zn-MOF				
N(4)-Zn(1)	1.982(4)	N(5)-Zn(2)	1.983(6)	-
O(1)-Zn(1)	1.948(5)	O(4)-Zn(2)#2	2.058(4)	
O(5)-Zn(2)#3	2.045(4)	O(1)#6-Zn(1)-O(1)	109.4(3)	
O(1)#6-Zn(1)-N(4)	102.46(19)	O(1)-Zn(1)-N(4)	116.5(2)	
O(1)#6-Zn(1)-N(4)#6	116.5(2)	O(1)-Zn(1)-N(4)#6	102.47(19)	
N(4)-Zn(1)-N(4)#6	110.1(3)	N(5)-Zn(2)-O(5)#7	107.14(19)	
N(5)-Zn(2)-O(5)#8	107.14(19)	O(5)#7-Zn(2)-O(5)#8	86.4(3)	
O(5)#7-Zn(2)-O(4)#2	156.83(18)	O(5)#8-Zn(2)-O(4)#2	88.3(2)	
N(5)-Zn(2)-O(4)#9	95.98(19)	O(5)#7-Zn(2)-O(4)#9	88.3(2)	
O(5)#8-Zn(2)-O(4)#9	156.83(18)	O(4)#2-Zn(2)-O(4)#9	87.7(3)	

Symmetry codes: #1 x,-y+1,z;#2 -x+3/2,-y+3/2,-z+1;#3 x+1/2,y+1/2,z+1;#4-x+1,-y+1,-z;#5 x,-

y+2,z;#6 -x+1,y,-z+1;#7 x-1/2,y-1/2,z-1;#8 x-1/2,-y+3/2,z-1;#9 -x+3/2,y-1/2,-z+1.

Table S2 Results of the ICP-OES analyses obtained for Tb@Zn-MOF

Test element	Sample quality (g)	C ₀ (mg/L)	Sample element content C _x (mg/kg)	Sample element content W (%)
Tb	0.1154	1.841	3988	0.40
Zn	0.1154	5.897	12774	1.28

Table S3 Results of the EDS analyses obtained for Tb@Zn-MOF

·0.7回集5				
		Graph 1	Graph 2	Graph 3
	Element		W _t (%)	
	Zn	25.81	33.66	32.89
	Tb	0.35	1.01	1.39

Table S4 A comparison of various MOFs materials used for selective adsorption for C_2H_2 and

MOFs materials	IAST calculat	ed selectivity	Ref.
	C_2H_2/CH_4	CO ₂ /CH ₄	
ZJNU-98		5.7	1b
ZJNU-81		5.46	2b
Zn-MOF	11.87	8.18	5a
${[Co_3(L)(OH)_2(H_2O)_4] \cdot 2DMF \cdot 2H_2O}_n$	13	4	9
${[Cu_4(L)_2(H_2O)_4]} \cdot 4DMF \cdot 8H_2O_n$		3.2	13a
$\label{eq:ch3} \begin{split} & [(CH_3)_2NH_2][Zn_{1.5}(\mu_3\text{-}O)_{0.5}(F\text{-}\\ & tzba)_{1.25}(bpy)_{0.25}(\mu_2\text{-}F)_{0.5}]\cdot 2DMF\cdot 2H_2O \end{split}$	14.4	4.2	14a
ZJNU-63	13.1	3.5	14b
$\{[Co_6(\mu 3-OH)4(Ina)_8](H_2O)_{10}(DMA)_2\}_n$	9.6		14c
ZJU-16a	7.5		14d
MOF-505	~8.9		15a
Zn ₂ (TCPP)(DPB)	12.1		15b
SNNU-5-In	10	3.9	15c

CO₂ over CH₄.

Zn-MOF	14.48	6.04	This work
--------	-------	------	-----------

MOFs materials	$K_{ m sv}$ (M ⁻¹)	Ref.
$H_3O[In_3(dcpy)_4(OH)_2] \cdot 3DMF \cdot 4H_2O$	4.3×10 ³	5b
Eu-MOF	1.78×10^{4}	5d
Tb(3+)@Zn-MOF	1.57×10^{4}	8b
Zn-MOF	1.9×10 ⁴	16b
Tb-DSOA	3.54×10 ³	17a
$[Tb_4(L)_6(H_2O)_8]$	1.88×10^{4}	17b
534-MOF-Tb	5.51×10 ³	17c
Tb-N	7.93×10 ³	19
Tb-F	1.39×10 ⁴	19
Tb@Zn-MOF	2.79×10 ⁴	This work

Table S5 Comparison the K_{sv} of **Tb@Zn-MOF** towards Fe³⁺ with other materials

Fig. S1 The L⁴⁻ ligand viewed as two 3-c nodes.

Fig. S2 Coordination environments of Zn-MOF (a) and Tb@Zn-MOF (b).

Fig. S3 $[Zn_2(COO)_4(N)_2]$ cluster (a) and ZnO_2N_2 cluster (b).

Fig. S4 The channel of Zn-MOF (a) and Tb@Zn-MOF (b).

Fig. S5 The four alternately connected layers in Zn-MOF (a) and the two alternately connected layers in Tb@Zn-MOF (b).

Fig. S6 Coordination angles of Zn(II) ions in Zn-MOF and Tb@Zn-MOF.

Fig. S7 PXRD patterns for Zn-MOF (a), Tb@Zn-MOF (b): Simulated, as-synthesized, solvent exchange and gas-adsportion samples.

Fig. S8 PXRD patterns for Zn-MOF (a), Tb@Zn-MOF (b) after being soaked in acidic and basic solutions.

Fig. S9 PXRD patterns for Tb@Zn-MOF after being soaked in different organic solvents.

Fig. S11 IR for ligand and as-synthesized samples: Zn-MOF (a) and Tb@Zn-MOF (b).

IAST adsorption selectivity calculation

The experimental isotherm data for pure C_2H_2 , CO_2 and CH_4 (measured at 298 K) were fitted using a Langmuir-Freundlich (L-F) model

$$q = \frac{a * b * p^c}{1 + b * p^c}$$

Where *q* and *p* are adsorbed amounts and pressures of component *i*, respectively. The adsorption selectivities for binary mixtures of C_2H_2/CH_4 and CO_2/CH_4 , defined by

$$\mathbf{S}_{i/j} = \frac{(\mathbf{X}_i^* \mathbf{Y}_j)}{(\mathbf{X}_j^* \mathbf{Y}_i)}$$

were calculated using the Ideal Adsorption Solution Theory (IAST) of Myers and Prausnitz.

Where x_i the mole fraction of component i in the adsorbed phase and y_i is the mole fraction of component i in the bulk.

Fig. S12 (a) C_2H_2 adsorption isotherms of **Zn-MOF** at 298 K with fitting by L-F model: a =8.248, b =0.014, c =0.084, Chi^2 = 6.2E-5, R^2 = 0.99999; (b) CO₂ adsorption isotherms of **Zn-MOF** at 298 K with fitting by L-F model: a =12.59506, b =0.0043, c =0.102, Chi^2 =3.2E-7, R^2 = 1; (c) CH₄ adsorption isotherms of **Zn-MOF** at 298 K with fitting by L-F model: a = 7.83267, b =0.00106, c =0.03594, Chi^2 = 2.6E-5, R^2 = 1.

Calculation of sorption heat for C₂H₂ and CO₂ uptakes using Virial 2 model

The above equation was applied to fit the combined C_2H_2 and CO_2 and isotherm data

for desolvated **1a** at 273 and 298 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, *ai* and *bi* are virial coefficients, and *m* and *n* are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and *R* is the universal gas constant.

Fig. S13 (a) Virial analysis of the C₂H₂ adsorption data at 298 K and 273 K for **Zn-MOF**. Fitting results: a0 = -3136.8988, a1 = 178.38107, a2 = -85.06356, a3 = 16.75777, a4 = -0.59305, b0 = 19.51637, b1 = -0.1369, b2 = 0.14452, b3 = -0.02591, Chi² = 8.14263E-6, R² = 0.99999; (b) Virial analysis of the CO₂ adsorption data at 298 K and 273 K for **Zn-MOF**. Fitting results: a0 = -2282.40823, a1 = -400.37189, a2 = 196.78851, a3 = -34.39808, a4 = -1.0745, b0 = 17.53214, b1 = 1.9186, b2 = -0.91172, b3 = 0.17317, Chi² = 4.32643E-5, R² = 0.99996; (c) Isosteric heat of C₂H₂ and CO₂ in **Zn-MOF**.

Fig. S14 The solid-state luminescence spectra of the H₄L ligand and Zn-MOF.

Fig. S15 (a) Luminescence intensities of Tb@Zn-MOF in different mixed metal solutions; (b) Multiple cycles for the luminescence quenching of Tb@Zn-MOF toward Fe³⁺ and recovery after washing by H₂O for several times.

Fig. S16 (a) PXRD patterns and (b) UV-vis adsorption spectra of M(NO₃)_x aqueous and the excitation spectrum of Tb@Zn-MOF.

Fig. S17 Raman spectra of Tb@Zn-MOF before and after treatment of Fe³⁺.