Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Phase Transition Behaviour and Mechanism of 2D TiO₂(B) Nanosheets

through Water-mediated Removal of Surface Ligands

Shirui Xie,^a Lijing Fan,^a Yanxin Chen,^a Jiliang Cai,^a Fan Wu,^a Kecheng Cao*^a and Pengxin Liu*^a

Directory

Characterization of the TiO ₂ (B) nanosheets precursor	Fig. S1-3	
Characterization of calcined TiO ₂ (B)	Fig. S4-6	
Characterization of water phase-treated TiO ₂ (B)	Fig. S7-12	
Pretreated TiO ₂ (B) nanosheets with H ₂ O ₂ solution	Fig. S13-14	

^a School of Physical Science and Technology, ShanghaiTech University, Shanghai, China. Email: <u>caokch@shanghaitech.edu.cn</u>; <u>liupx@shanghaitech.edu.cn</u>

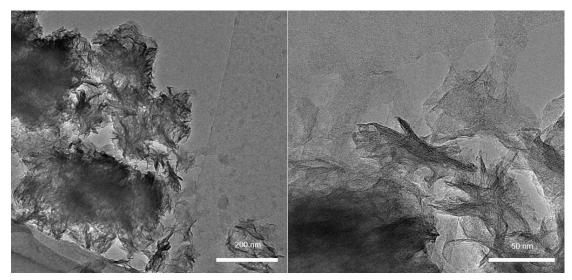
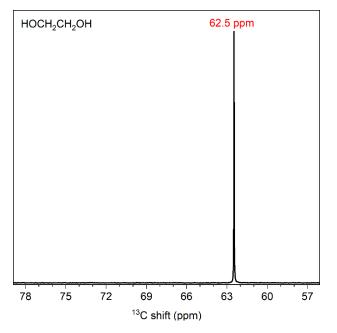
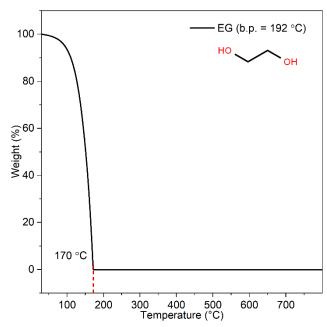




Fig. S1 Representative TEM images of the $TiO_2(B)$ nanosheets precursor.

Fig. S2 ¹³C ss-NMR of EG shows a singlet peak at 62.5 ppm, lower than the ¹³C ss-NMR of $TiO_2(B)$ nanosheets, which indicates a different chemical environment.

Fig. S3 TGA curve of free EG. In air flow, free EG completely evaporated at temperature lower than its boiling point.

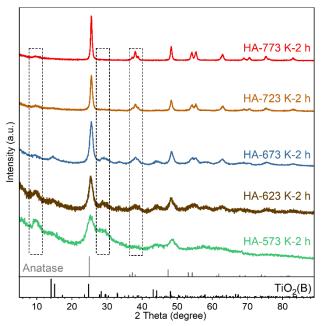


Fig. S4 XRD patterns of calcined $TiO_2(B)$ nanosheets at different temperatures for 2 hours. The phase transition was completed at 773 K.

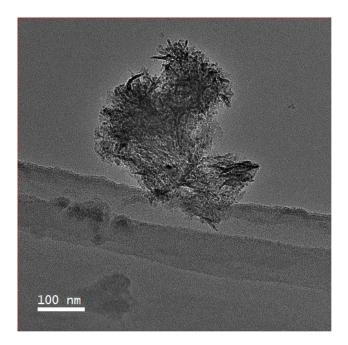
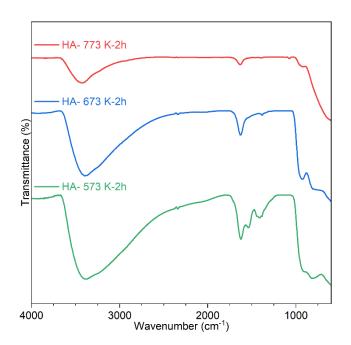
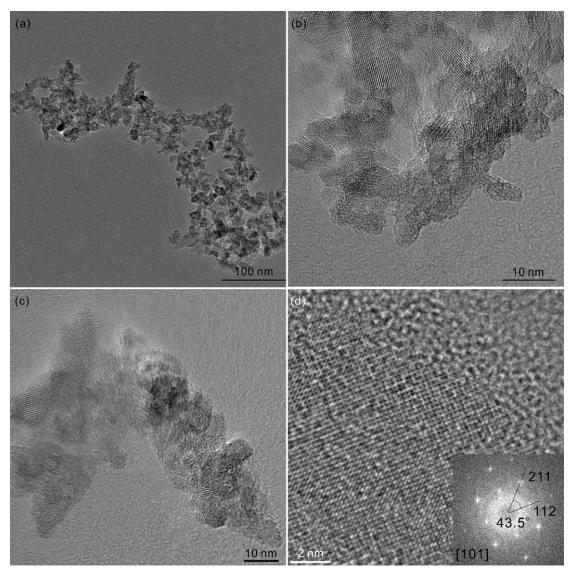




Fig. S5 Representative TEM image of HA-773 K-2 h.

Fig. S6 FT-IR spectra of samples obtained after heat treatment in air at 573 K, 673 K, 776 K for 2 hours. As the temperature increased, the amount of EG ligand residue decreased, proved by the loss of intensities of peaks at 2932, 2872, 1080 cm⁻¹.

Fig. S7 (a) TEM image and (b, c, d) HRTEM images of HW-373 K-3 h, inset of (d) is the FFT result of the HRTEM image.

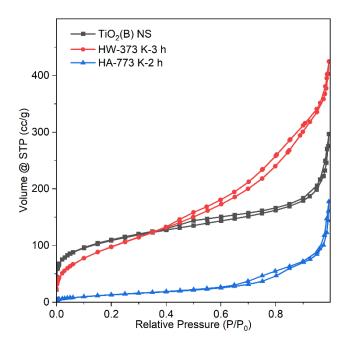
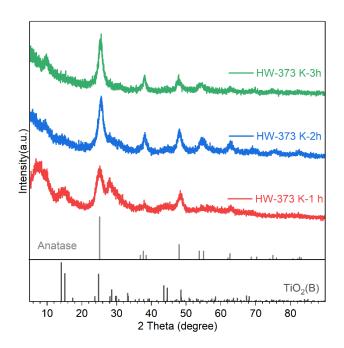
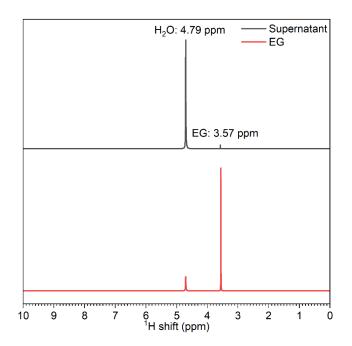




Fig. S8 BET curves of $TiO_2(B)$ nanosheets, sample obtained after heating in water at 373K for 3 hours and sample obtained after heating in the air at 773K for 2 hours. Their specific surface area was 341.5 m²/g, 214.9 m²/g and 53.2 m²/g, respectively.

Fig. S9 XRD patterns of samples obtained after heating $TiO_2(B)$ nanosheets in water at 373K for 1, 2, 3 hours, respectively. The decreased intensity of peaks at 28.6° and the increased intensity of peaks at 38.1° indicated the phase transition.

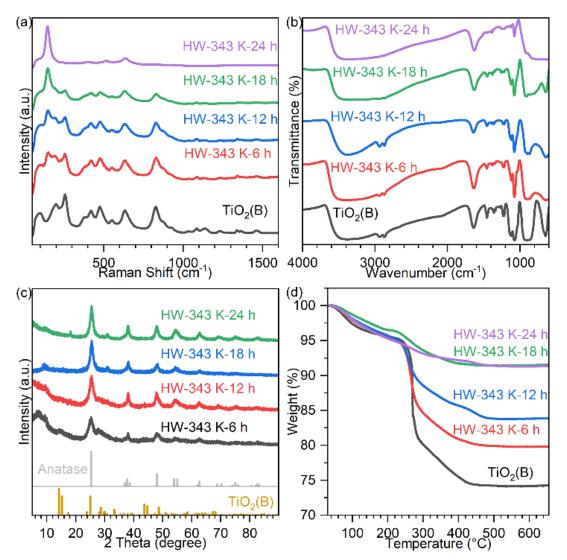


Fig. S10 NMR of supernatant after heating $TiO_2(B)$ nanosheets in water, in comparison with the NMR of free EG, which proves that free EG is formed and released into the water phase from the material.

 1 H NMR spectra was record on Bruker 500 MHz with 5 mm NMR tube and D₂O as solvent. 1 H chemical shifts were referenced to water at 4.79 ppm. Ethylene glycol was measured by 64 scans while supernatant was 128 scans.

Table S1 Quantification of surface ligands. *m* stands for the initial mass of materials for TGA, while *WL* stands for mass change in the 220 -450 °C range. *S* stands for surface area. $\triangle S$ stands for the differences of the initial surface area and the surface area of corresponding calcined samples at 450 °C.

Sample	<i>m</i> /mg	WL /mg	S/m ²	<i>∆S/</i> m²	<i>п_{-он}/</i> mmol	<i>n_{EG}</i> /mmol
Precursor	7.028	1.632	2.400	2.113	0.0374	0.0294
HW-373 K-1 h	6.588	0.884	1.989	1.686	0.062	0.0074
HW-373 K-2 h	10.026	0.909	2.449	1.964	0.0815	0.0040
HW-373 K-3 h	7.061	0.479	1.517	1.167	0.0532	0

Fig. S11 (a) Raman, (b) FT-IR spectra, (c) XRD and (d) TGA results of time-tracking experiments by heating $TiO_2(B)$ nanosheets in water at 343K for 6, 12, 18, 24 hours.

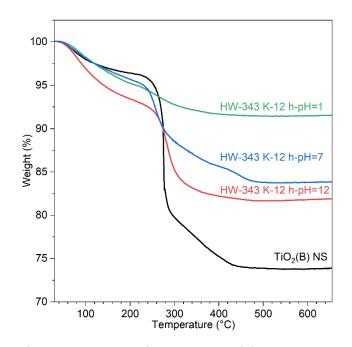
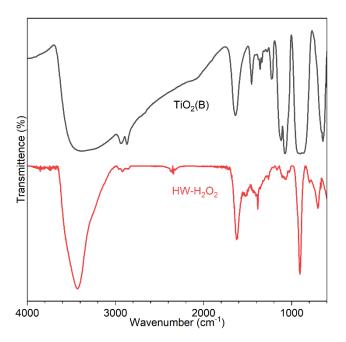
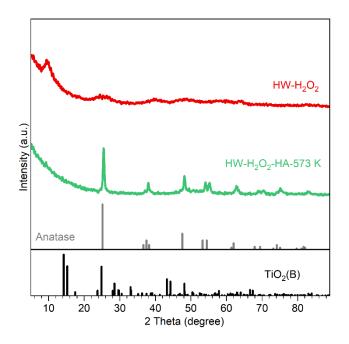




Fig. S12 TGA results of samples obtained after heating $TiO_2(B)$ nanosheets in water at 343 K with pH = 1, 7, 12.

Fig. S13 FT-IR spectra of samples obtained after H_2O_2 treatment. The decreased peaks at 2932, 2872, 1080 cm⁻¹ proves that EG ligands are partly removed from the surface of the TiO₂(B) nanosheets.

Fig. S14 XRD patterns of sample pretreated with H_2O_2 and the corresponding calcined sample. After treated with H_2O_2 for 12 hours, the TiO₂(B) nanosheets became amorphous and converted to well crystallized anatase after heated in the air at 573 K for 2 hours. Without H_2O_2 pretreatment, HA-573 K-2 h was not fully converted into anatase (see **Fig. S4**).