SUPPLEMENTARY INFORMATION

Figure 1. Ellipsoid plot of the asymmetric unit of salt 1 (50% probability).

Table 1. Crystal data and structure refinement for 1.

Empirical formula	C ₁₅ H ₁₂ AuFN ₂ Te
Formula weight	563.83
Temperature/K	298.00
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	9.5046(4)
b/Å	13.2604(2)
c/Å	13.3332(3)
α/°	90
β/°	109.638(3)
γ/°	90
Volume/Å ³	1582.71(8)
Z	4
ρ _{calc} g/cm ³	2.366
µ/mm ⁻¹	31.743
F(000)	1024.0
Crystal size/mm ³	0.11 × 0.1 × 0.05
Radiation	Cu Kα (λ = 1.54184)
2O range for data collection/°	9.7 to 133.75
Index ranges	$-10 \le h \le 8$, $-15 \le k \le 14$, $-15 \le l \le 15$
Reflections collected	8706
Independent reflections	2484 [R _{int} = 0.0362, R _{sigma} = 0.0295]
Data/restraints/parameters	2484/0/191
Goodness-of-fit on F ²	1.066
Final R indexes [I>=2σ (I)]	R ₁ = 0.0428, wR ₂ = 0.1127
Final R indexes [all data]	R ₁ = 0.0457, wR ₂ = 0.1164
Largest diff. peak/hole / e Å ⁻³	1.72/-1.28

Table 2. Bond Lengths for 1.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Au1	C1	1.971(10)	C6	F1	1.268(10)
Au1	C2	1.965(9)	C11	C12	1.376(10)
Te1	C4	2.112(6)	C8	C9	1.399(10)
Te1	C10	2.119(8)	C7	C8	1.348 (20)
Te1	C3	2.116(9)	C15	C14	1.357(20)
C4	C5	1.381(10)	C12	C13	1.337(20)

C4	C9	1.372(10)	C13	C14	1.394 (10)
C10	C11	1.381(10)	C14	F2	1.328(20)
C10	C15	1.388(10)	C1	N1	1.130(10)
C5	C6	1.370(10)	C2	N2	1.142(10)
C6	C7	1.392(10)			

Table 3. Bond Angles for 1.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	Au1	C2	176.5(4)	F1	C6	C7	118.0(9)
C4	Te1	C10	95.0(3)	C12	C11	C10	119.2(8)
C3	Te1	C4	97.9(3)	C7	C8	C9	121(1)
C3	Te1	C10	93.6(3)	C4	C9	C8	119 (1)
C5	C4	Te1	117.4(5)	C14	C15	C10	119.2(9)
C9	C4	Te1	122.3(6)	C12	C13	C14	118(1)
C9	C4	C5	120.2(8)	C13	C12	C11	122(1)
C11	C10	Te1	122.2(6)	C8	C7	C6	118.9(9)
C11	C10	C15	119.5(7)	C15	C14	C13	122(1)
C15	C10	Te1	118.2(6)	F2	C14	C15	121 (1)
C6	C5	C4	119.4(7)	F2	C14	C13	116(1)
C7	C6	C5	121.1(8)	N2	C2	Au1	179.1(9)
F1	C6	C5	120.9(9)	N1	C1	Au1	176.3(9)

Figure 2. Ellipsoid plot of the asymmetric unit of salt 2 (50% probability)

Empirical formula	C ₁₅ H ₁₃ AuN ₂ Te
Formula weight	545.84
Temperature/K	298.00
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	9.2490(2)
b/Å	13.2961(2)
c/Å	13.4912(3)
α/°	90
β/°	108.514(2)

γ/°	90
Volume/Å ³	1573.21(6)
Z	4
ρ _{calc} g/cm ³	2.305
μ/mm ⁻¹	31.808
F(000)	992.0
Crystal size/mm ³	0.8 × 0.7 × 0.12
Radiation	Cu Kα (λ = 1.54184)
2O range for data collection/°	9.594 to 133.582
Index ranges	-10 ≤ h ≤ 9, -15 ≤ k ≤ 15, -16 ≤ l ≤ 15
Reflections collected	16022
Independent reflections	2725 [R _{int} = 0.0529, R _{sigma} = 0.0244]
Data/restraints/parameters	2725/0/174
Goodness-of-fit on F ²	1.069
Final R indexes [I>=2σ (I)]	$R_1 = 0.0400, wR_2 = 0.1075$
Final R indexes [all data]	$R_1 = 0.0425$, $wR_2 = 0.1108$
Largest diff. peak/hole / e Å ⁻³	1.32/-1.99

Table 5. Bond lengths for 2.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Te1	C4	2.108(5)	C11	C12	1.374(10)
Te1	C10	2.132(6)	C10	C15	1.376(8)
Te1	C3	2.116(6)	C15	C14	1.374(10)
Au1	C1	1.979(8)	C1	N1	1.131(9)
Au1	C2	1.960(9)	C5	C6	1.392(12)
C4	C9	1.374(9)	C2	N2	1.175(10)
C4	C5	1.363(10)	C6	C7	1.357(12)
C9	C8	1.396(10)	C14	C13	1.327(13)
C8	C7	1.360(11)	C13	C12	1.411(12)
C11	C10	1.384(9)			

Table 6. Bond angles for 2.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C4	Te1	C10	95.3(2)	C15	C10	Te1	118.0(5)
C4	Te1	C3	97.2(3)	C15	C10	C11	121.1(6)
C3	Te1	C10	94.0(3)	C14	C15	C10	117.9(7)
C2	Au1	C1	176.8(3)	N1	C1	Au1	177.6(7)
C9	C4	Te1	117.6(4)	C4	C5	C6	119.4(8)
C5	C4	Te1	122.8(5)	N2	C2	Au1	178.2(6)
C5	C4	C9	119.5(6)	C7	C6	C5	121.2(7)
C4	C9	C8	120.4(6)	C6	C7	C8	119.7(7)
C7	C8	C9	119.7(7)	C13	C14	C15	122.6(8)
C12	C11	C10	119.7(7)	C14	C13	C12	120.1(7)
C11	C10	Te1	120.9(4)	C11	C12	C13	118.6(7)

Table 7. Vibrational data for 1, 2, 3a and 3b $\,$

3	b	2	2		Ba	1		Assignment
IR	Raman	IR	Raman	IR	Raman	IR	Raman	
3150 w	3150 w	3149 w	3149 w	3154 vw		3149 vw	3149 w	
3090 m	3090 sh			3091 sh				
		3078 m				3078 w	3078 m	
	3065 s	3068 m		3064 w				
3057 s			3055 s			3056 m	3058 s	V _{CH} (C ₆)
		3045 s				3045 m	3042 m	
		3036 sh	3036 w					
3024 sh	3024 vw		3027 m			3026 w		

2997 w	3000 vw	2992 w		2998 vw				
2957 m		2960 w						
		2951 w		2953 w		2953 w		
2940 s	2941 m	2945 w	2945 m					(0.1.)
2926 sh		2929 m	2930 s			2931 sh	2934 m	v _{CH} (CH₃)
0074				2918 m		2918 s		
2874 m		2880 vw		2874 w		2874 W		
2859 m		2859 VW		2050		2050 -		
		0150 m	0150 -	2850 m		2850 S	0150 1/2	
		2138 11	2100 S			2120 VW	2138 VS	V _{CN}
		2137 005	2137 W	1599 c	1502 m	2130 VS	2130 VW	
1575 W	1579 m	1573 m	1579 m	1500 S	1595 m	1505 S 1575 m	1590 VW	
1/181 m	1/85 w	1/77 e	1/78 w	1/17/ e	1/79 \/	1/71 e	1/180 w	
1438 s	1438 w	1477 s	1470 W	1474 3 1430 m		1435 m	1400 ₩	
1400 0	1400 W	1402 3		1426 m		1400 111		V _{C-C}
1419 w		1419 m	1421 vw	1414 sh		1416 m		
1396 w		1390 w	1394 w					
1337 w		1331 m	1334 vw	1336 w	1336 vw	1331 w		
		1303 w		1308 w	1309 w	1301 w		
1286 w				1285 w				0
1269 w		1269 w	1270 vw	1271 w	1271 w	1268 m	1268 w	р _{СН}
				1227 m	1229 w	1229 m	1229 w	
1240 vw		1220 m						
				1218 m	1218 w	1219 s	1219 sh	V _{C-F}
	1198 w							
1185 w	1185 w	1179 w	1192 w	1185 w	1188 vw	1185 w	1188 w	δ _{CH3}
1163 vw	1164 w			1166 w	1168 w	1162 m	1160 w	
		1094 w			1089 w	1085 m	1085 w	ß
		1065 m	1067 w					РСН
		1060 m			1059 w	1060 m	1060 w	
1046 vs				1044 vs				
1031 vs				1028 vs				V _{B-F}
1015 vs	4004	1010	1000		4004	4000	4004	0
000	1021 m	1018 m	1022 S	005	1021 m	1020 m	1021 m	β _{CH}
996 VS	1002 s	996 s	1000 VS	995 VS	1000 Vs	997 m	999 VS	Ring
976 sn		066 m						
015 m		900 m	019	010 m		012		
915111		91111	910 W	910111		912 W		үсн
867 m		862 s	864 w	876 m		861 m		
845 sh		845 m	847 \vvv	848 s	851 w	847 m	851 w	000
		832 w		0100	0011	017 111	001 1	Vou
				787 m		779 m		C-F
	767 w			766 w	767 m			
743 s			740 vw	736 s		730 s		VCH
732 s		723 vs						1011
687 s		685 vs	687 vw	685 sh		683 m		
				676 m	678 vw	672 s		Φ
	662 s		660 s	655 w	659 s	653 w	659 m	
613 vw	614 w	613 vw	615 w	614 w	614 w		614 w	α _{C-C-C}
543 vw	544 s	539 w	541 vs	544 w	544 s	538 w	539 s	V _{(CH3)-Te}
520 m	520 sh		_					δ _{B-F}
				520 m	523 m	521 m	524 w	
				498 vw				C-F
464 m		458 m	461 w	453 vw		453 m	453 w	
444 w		445 s		438 m				
				430 w				C-F
		427 m				425 vs		
				352 vw	352 w			

			304 sh 298 m				304 m 300 sh	β _{CN}
	281 m							
		269 w	273 m	269 sh	270 s		269 s	V _{symTe-C}
262 m	259 m	259 m	261 s	258 w	259 sh	258 m	258 vs	V _{asymTe-C}
	247 m	245 w	240 w	243 sh	243 s	243 w	243 s	
	231 sh	235 w	234 m					
					211 m		210 s	
	186 w	185 m	185 w					
				166 w	166 m	161 m		

Figure 3. FT-ATR spectra of 1 (in red) and 3a (in blue).

Figure 4. Raman spectra of 1 (in red) and 3a (in blue).

Figure 5. FT-ATR spectra of 2 (in red) and 3b (in blue).

Figure 6. Raman spectra of 2 (in red) and 3b (in blue).

Synthesis and analysis of compound 3a and 3b

Scheme 1. Synthesis of methyldiaryltelluronium terafluoroborate salts 3a-b.

General Information

Materials. Unless specified, all reagents were used as received without further purifications. Reactions were monitored by GC-MS analysis and/or by thin-layer chromatography (TLC) carried out on 0.25 mm silica gel coated aluminium plates (60 Merck F254) with UV light (254 nm) as visualizing agent. Chromatographic separations were carried out under pressure on silica gel (40-63 µm, 230-400 mesh) using flash-column techniques.

Instrumentation. ¹H NMR (600 MHz), ¹³C{1H} (150 MHz), ¹⁹F NMR (564 MHz), ¹¹B (192 MHz) spectra were recorded on a Jeol ECZR600 spectrometer at room temperature using residual solvent peak as an internal reference. Chemical shifts (δ) are given in parts per million (ppm) and coupling constants (J) in Hertz (Hz). Multiplicities are reported as follows: s (singlet), d (doublet), t (triplet), quint (quintet), sext (sextet), sept (septet), m (multiplet), br (broad). GC analyses were performed on a PerkinElmer Autosystem XL chromatographic system equipped with a methyl silicone capillary column. Mass spectra were obtained on a Shimadzu QP 1000 instrument (EI, 70 eV) and on a Bruker maXis 4G instrument (ESI-TOF, HRMS).

Synthesis of diarytellane

General procedure. Diaryltellane were synthetized following the reported procedure.^[1] In a 10 mL capacity round bottom flask, diphenylditelluride I (1.0 eq., 100 mg, 0.24 mmol), Cul (0.05 eq., 2 mg, 0.012 mmol), 2,2'-bipyridine (0.05 eq., 2 mg, 0,012 mmol), the appropriate phenylboronic acid (3-fluorophenylboronic acid for **IIa** and phenylboronic acid for **IIb**) (3.0 eq., 0.72 mmol) were sequentially added in H₂O/DMSO 1:2 solution (1 mL). The reaction mixture was stirred at 100°C overnight. Then, reaction mixture was poured in water (5 mL) and extracted with ethyl acetate (3x5 mL). Combined organic layer was dried over (Na₂SO₄) and evaporated under reduced pressure. Crude mixture was purified by column chromatography (pure hexane) to provide the pure diaryltellane.

Synthesis and analysis of methyldiaryltelluronium terafluoroborate salts (3a and 3b)

General procedure. Methyldiaryltelluronium tetrafluoroborate salt **3a** and **3b** were synthetized following the reported procedure.^[2] In a 10 mL capacity round bottom flask, the selected diaryltellane (1.0 eq., 0.35 mmol), AgBF₄ (1.1 eq., 74 mg, 0.38 mmol) were dissolved and stirred in anhydrous DCE (4 mL) under nitrogen. Then MeI (3 eq., 62 μ L, 1 mmol) was added and the mixture was stirred overnight, in the dark at room temperature. The mixture was filtrated through a celite pad to remove AgI and it was washed with acetonitrile (15 mL). The filtrate was evaporated under reduced pressure to give crude methyldiaryltelluronium terafluoroborate salt **3a**-b, that was purified by trituration with DCM.

(3-Fluorophenyl)(methyl)(phenyl)telluronium tetrafluoroborate (3a): according to the general procedure starting from fluorophenyl-phenyltellane, white solid (80%, 112 mg). ¹H NMR (600 MHz, CD₃COCD₃): δ 7.93-7.91 (m, 2H), 7.73-7.69 (m, 2H), 7.67-7.63 (m, 2H), 7.61-7.59 (m, 2H), 7.43-7.40 (m, 1H), 3.10 (s, 3H). ¹³C{¹H} NMR (150 MHz, CD₃COCD₃): δ 162.9 (d, J = 250.7 Hz, 1C), 134.3, 132.4, 132.3, 130.7, 130.4 (d, J = 4.3 Hz, 1C), 124.6 (d, J = 6.3 Hz, 1C), 122.9, 121.1 (d, J = 24.4 Hz, C), 119.3 (d, J = 20.5 Hz, C), 11.4. ¹⁹F (564 MHz, CD₃COCD₃): δ -110.49 (s, 1F), -149.74 (s, 4F). ¹¹B (192 MHz, CD₃COCD₃): δ -1.89 (s, 1B).

Methyldiphenyltelluronium tetrafluoroborate (3b): according to the general procedure starting from diphenyltellane, white solid (90%, 121 mg). ¹H NMR (600 MHz, MeOD): δ 7.72-7.71 (m, 4H), 7.59-7.56 (m, 2H), 7.54-7.51 (m, 4H), 2.74 (s, 3H). ¹³C{¹H} NMR (150 MHz, MeOD): δ 133.7, 131.7, 130.2, 124.1, 10.7. ¹⁹F (564 MHz, MeOD): δ -154.4 (s, 4F). ¹¹B (192 MHz, MeOD): δ -2.11 (s, 1B).^[2]

(3-Fluorophenyl)(methyl)(phenyl)telluronium tetrafluoroborate (3a) ¹H NMR (600 MHz, CD₃COCD₃)

¹³C NMR (150 MHz, CD₃COCD₃)

Methyldiphenyltelluronium tetrafluoroborate (3b)

¹H NMR (600 MHz, MeOD)

¹³C NMR (150 MHz, MeOD)

Reference

- [1] A. Kumar, S. Kumar, *Tetrahedron* **2014**, *70*, 1763-1772.
- [2] R. Weiss, E. Aubert, P. Pale, V. Mamane, *Angew. Chem. In. Ed.* **2021**, *133*, 19430-19435.