1 Supporting Information

- 2
- 3 Dual cation-modified hierarchical nickel hydroxide nanosheets arrays as
- 4 efficient and robust electrocatalysts for urea oxidation reaction
- 5 Fang Miao^{a#}, Peng Cui^{b#*}, Tao Gu^a, Shijie Yu^b, Yuhong Zhao^{a*}
- 6
- 7 a College of Materials Science and Engineering, North University of China, Taiyuan
- 8 030051, China
- 9 b School of Materials Science and Engineering, Southeast University, Nanjing, 211189,

10 China

- 11 # Authors contributed equally to this work
- 12 * Corresponding authors
- 13 Email address: 230198621@seu.edu.cn (Peng Cui); 13233201442@163.com (Yuhong
- 14 Zhao)
- 15
- 16
- 17
- 18
- 19
- 20

- 22 Fig. S1. SEM image and EDS mapping spectrum of $Ni(OH)_2$.

26 Fig. S2. SEM image and EDS mapping spectrum of Co/Mn-Ni(OH)₂.

30 Fig. S3. LSV curves of Co/Mn-Ni(OH)₂ catalysts prepared with different ratios of the 31 $Co^{2+}:Mn^{2+}:Ni^{2+}$ in the solution. The Co/Mn-Ni (OH)₂ catalysts prepared with the Co²⁺:

32 Mn^{2+} : Ni²⁺ ratios of 1:9:90, 9:1:90, 5:5:90, 3:7:90 and 7:3:90 in the solution require the

- 33 potential of 1.398 V, 1.387 V, 1.380 V 1.395 V and 1.391 V to achieve the current
- 34 density of 100 mA cm⁻², respectively.

Fig. S4. LSV curves of Co/Mn-Ni(OH)₂ catalysts prepared with different ratios of the
Co²⁺:Ni²⁺ in the solution. The Co-Ni (OH)₂ catalysts prepared with the Co²⁺: Mn²⁺: Ni²⁺
ratios of 2.5:97.5, 5:95, 10:90 in the solution require the potential of 1.415 V, 1.395 V
and 1.405 V to achieve the current density of 100 mA cm⁻², respectively.

48

49 Fig. S5. LSV curves of Mn-Ni(OH)₂ catalysts prepared with different ratios of the 50 $Mn^{2+}:Ni^{2+}$ in the solution. The Mn-Ni (OH)₂ catalysts prepared with the Mn²⁺: Ni²⁺ 51 ratios of 2.5:97.5, 5:95, 10:90 in the solution require the potential of 1.436 V, 1.418 V 52 and 1.427 V to achieve the current density of 100 mA cm⁻², respectively.

53

54

57 Fig. S6. The equivalent circuit mode. R_s represents the electrolyte resistance. CPE is 58 constant phase element (CPE). R_{ct} is the charge transfer resistance at the interface 59 between the solid-liquid interfaces and is related to the kinetics of the catalytic reaction.

61 Fig. S7. CV curves of different catalysts at different sweep speeds are as follows: a)

62 Co/Mn-Ni(OH)₂, b) Co-Ni(OH)₂, c) Mn-Ni(OH)₂, d) Ni(OH)₂, e) RuO₂, f) NF.

88 Fig. S9. XPS spectra of a) Ni 2p and b) O 1s of the Co/Mn-Ni(OH)₂ after stability test.
89

92 Fig. S10. The DOS of pure $Ni(OH)_2$ sample.

					Tafel	
Materials	Electrolyte $(KOH + urea)$		Potential (V vs. RHE)	slopes (mV	Ref	
		(iton + uiou)			dec ⁻¹)	
	Ovac-V-Ni(OH)2/NF	1 M	0.33 M	1.47 @100 mA cm ⁻²	29.12	[1]
	SS-NiCo	1 M	0.33 M	1.34 @100 mA cm ⁻²	48.2	[2]
	Ni/NiMoO _x	1 M	0.33 M	1.355 @20 mA cm ⁻²	24.3	[3]
	Ni-S-Se	1 M	0.5 M	1.6 @100 mA cm ⁻²	-	[4]
	Ce-Ni ₂ P	1 M	0.3 M	1.473 @100 mA cm ⁻²	78.4	[5]
	Ni、N-NiMoO ₄ /NF	1 M	0.5 M	1.444 @100 mA cm ⁻²	120	[6]
	CoN/Ni(OH) ₂	1 M	0.5 M	1.39 @50 mA cm ⁻²	64	[7]
	Ni ⁰ -rich Ni/NiO	1 M	0.33 M	1.49 @10 mA cm ⁻²	85	[8]
	NiS/MoS2@FCP	1 M	0.4 M	$1.43 @ 100 \text{ mA cm}^{-2}$	70	[9]
	NiCo-WO _x	1 M	0.33 M	1.38 @100 mA cm ⁻²	28	[10]
	This work	1 M	0.33 M	1.38 @100 mA cm ⁻²	35	

94 Table. S1 Comparison of this work with other catalysts.

95

96 Reference

97

99 Vacancy in Ni(OH)2 to Boost Urea Electrooxidation. Advanced Functional Materials. 2022;33.
100 [2] Zhang Z, Yang J, Liu J, Gu Z-G, Yan X. Sulfur-doped NiCo carbonate hydroxide with
101 surface sulfate groups for highly enhanced electro-oxidation of urea. Electrochimica Acta.
102 2022;426.

98 [1] Qin H, Ye Y, Li J, Jia W, Zheng S, Cao X, et al. Synergistic Engineering of Doping and

103 [3] Liu G, Sun Z, Liu D, Li Y, Zhang W. Enhancing the surface polarization effect via

- 104 Ni/NiMoOx heterojunction architecture for urea-assisted hydrogen generation. Journal of
- 105 Colloid and Interface Science. 2023;629:1012-20.
- 106 [4] Chen N, Du Y-X, Zhang G, Lu W-T, Cao F-F. Amorphous nickel sulfoselenide for efficient
- 107 electrochemical urea-assisted hydrogen production in alkaline media. Nano Energy.108 2021;81:105605.
- 109 [5] Xiong K, Yu L, Xiang Y, Zhang H, Chen J, Gao Y. Cerium-incorporated Ni2P nanosheets
- 110 for enhancing hydrogen production from overall water splitting and urea electrolysis. Journal
- 111 of Alloys and Compounds. 2022;912:165234.
- 112 [6] Wang T, Wu H, Feng C, Ding Y, Mei H. Ni, N codoped NiMoO4 grown on 3D nickel
- 113 foam as bifunctional electrocatalysts for hydrogen production in urea water electrolysis.114 Electrochimica Acta. 2021;391:138931.
- 115 [7] Cheng Y, Liao F, Dong H, Wei H, Geng H, Shao M. Engineering CoN/Ni(OH)2
 116 heterostructures with improved intrinsic interfacial charge transfer toward simultaneous
 117 hydrogen generation and urea-rich wastewater purification. Journal of Power Sources.
 118 2020;480:229151.
- 119 [8] Zhang B, Wang S, Ma Z, Qiu Y. Ni0-rich Ni/NiO nanocrystals for efficient water-
- 120 to-hydrogen conversion via urea electro-oxidation. Applied Surface Science. 2019;496:143710.
- 121 [9] Zheng Y, Tang P, Xu X, Sang X. POM derived UOR and HER bifunctional NiS/MoS2
- 122 composite for overall water splitting. Journal of Solid State Chemistry. 2020;292.
- 123 [10] Roh H, Lim C, Kim D, Park T, Yong K. Hierarchically nanostructured Ni(Mo,Co)-WOx
- 124 electrocatalysts for highly efficient urea electrolysis. Applied Surface Science.

125 2023;610:155520.