Supplementary Information for

Evaluation of oxygen-containing pentadentate ligands with pyridine/quinoline/isoquinoline binding sites *via* structural and electrochemical properties of mononuclear copper(II) complexes†

Yuji Mikata,^{a,b,c,d,*} Mizuho Uchida,^c Hinata Koike,^d Sunao Shoji,^{a,d} Yutaka Ohsedo,^{a,d} Yasushi Kawai^e and Takashi Matsuo^f

^aLaboratory for Molecular & Functional Design, Department of Engineering, Nara Women's University, Nara 630-8506, Japan

^bKYOUSEI Science Center, Nara Women's University, Nara 630-8506, Japan

^cDepartment of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Nara 630-8506, Japan

^dCooperative Major in Human Centered Engineering, Nara Women's University, Nara 630-8506, Japan

^eNagahama Institute of Bio-Science & Technology, Nagahama, Shiga 526-0829, Japan ^fDivision of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Takayama, Ikoma, Nara 630-0192, Japan

IN	D	ΕX
TTA		

Preparation	1 of copper(II) complexes······S4-S9				
X-ray cryst	allographyS10-S12				
Table S1.	Crystallographic data for [Cu(PQP)(ClO ₄)]ClO ₄ (PQP-Cu) and				
	$[Cu(PQQ)](ClO_4)_2 (PQQ-Cu)$				
Table S2.	Crystallographic data for [Cu(PIP)(ClO ₄)]ClO ₄ ·CH ₃ CN (PIP-				
	Cu·CH ₃ CN) and [Cu(III)(ClO ₄)]ClO ₄ ·CH ₃ CN (III-Cu·CH ₃ CN)				
Table S3.	Selected Bond Angles (°) for PPP-Cu, PPQ-Cu, PQP-Cu, PQQ-Cu, PIP-				
	Cu and III-Cu				
Cyclic volt	ammetryS13-S14				
Fig. S1.	Cyclic voltammogram of copper(II) complexes in acetonitrile.				
Absorption	spectrumS15-S16				
Fig. S2.	Absorption spectrum of copper(II) complexes in methanol.				
¹ H/ ¹³ C NMF	R spectrum······S17-S37				
Fig. S3.	¹ H/ ¹³ C NMR spectrum of PPI in CDCl ₃ .				
Fig. S4.	¹ H NMR spectrum of 2-((2-pyridylmethyl)(2-quinolylmethyl)-				
	amino)ethanol in CDCl3.				
Fig. S5.	¹ H/ ¹³ C NMR spectrum of PQP in CDCl ₃ .				
Fig. S6.	1 H/ 13 C NMR spectrum of PQQ in CDCl ₃ .				
Fig. S7.	¹ H/ ¹³ C NMR spectrum of PQI in CDCl ₃ .				
Fig. S8.	¹ H NMR spectrum of 2-((2-pyridylmethyl)(1-isoquinolylmethyl)-				
	amino)ethanol in CDCl3.				
Fig. S9.	¹ H/ ¹³ C NMR spectrum of PIP in CDCl ₃ .				
Fig. S10.	¹ H/ ¹³ C NMR spectrum of PIQ in CDCl ₃ .				
Fig. S11.	¹ H/ ¹³ C NMR spectrum of PII in CDCl ₃ .				
Fig. S12.	$^{1}H/^{13}C$ NMR spectrum of QQP in CDCl ₃ .				
Fig. S13.	1 H/ 13 C NMR spectrum of QQQ in CDCl ₃ .				
Fig. S14.	¹ H/ ¹³ C NMR spectrum of QQI in CDCl ₃ .				
Fig. S15.	¹ H NMR spectrum of 2-((1-isoquinolylmethyl)amino)ethanol in CDCl ₃ .				
Fig. S16.	¹ H NMR spectrum of 2-((2-quinolylmethyl)(1-isoquinolylmethyl)-				
	amino)ethanol in CDCl ₃ .				
Fig. S17.	$^{1}H/^{13}C$ NMR spectrum of QIP in CDCl ₃ .				

Fig. S18. ¹H/¹³C NMR spectrum of QIQ in CDCl₃.
Fig. S19. ¹H/¹³C NMR spectrum of QII in CDCl₃.
Fig. S20. ¹H NMR spectrum of 2-(bis(1-isoquinolylmethyl)amino)ethanol in CDCl₃.
Fig. S21. ¹H/¹³C NMR spectrum of IIP in CDCl₃.
Fig. S22. ¹H/¹³C NMR spectrum of IIQ in CDCl₃.
Fig. S23. ¹H/¹³C NMR spectrum of III in CDCl₃.

References------S38

Preparation of copper(II) complexes

PPI-Cu ([Cu(PPI)(ClO₄)]ClO₄)

To a solution of **PQP** (9.3 mg, 24 μ mol) in ethanol (0.5 mL) were added Cu(ClO₄)₂·6H₂O (10.7 mg, 29 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to give **PPI-Cu** as a blue powder (5.7 mg, 8.8 μ mol, 37%).

HRMS (ESI) m/z: [**PPI** + Cu + ClO₄]⁺ calcd. for C₂₄H₂₄ClCuN₄O₅ 546.07315; found 546.07146.

mp 211-214 °C.

PQP-Cu ([Cu(PQP)(ClO₄)]ClO₄)

To a solution of **PQP** (20.2 mg, 52 μ mol) in methanol (0.6 mL) were added Cu(ClO₄)₂·6H₂O (18.5 mg, 51 μ mol) and NaClO₄·H₂O (70.2 mg, 500 mmol) in methanol (0.4 mL), and the solution kept at 4 °C under ether diffusion conditions. The green powder was recrystallized with acetonitrile (0.5 mL) at 4 °C under ether diffusion conditions to afford **PQP-Cu** as green crystals suitable for X-ray crystallography (11.0 mg, 17 μ mol, 33%).

Anal Calcd. for C₂₄H₂₄Cl₂CuN₄O₉ (**PQP-Cu**): C, 44.56; H, 3.74; N, 8.66. Found: C, 44.75; H, 3.78; N, 8.87.

PQQ-Cu ([Cu(PQQ)](ClO₄)₂)

To a solution of **PQQ** (11.1 mg, 26 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (11.7 mg, 27 μ mol) in ethanol (0.5 mL). The solution was kept at 4 °C under ether diffusion conditions to afford **PQQ-Cu** as green crystals suitable for X-ray crystallography (11.7 mg, 17 μ mol, 65%).

HRMS (ESI) m/z: [**PQQ** + Cu + ClO₄]⁺ calcd. for C₂₈H₂₆ClCuN₄O₅ 596.08877; found 596.08659.

mp 174-176 °C.

PQI-Cu ([Cu(PQI)(ClO₄)]ClO₄)

To a solution of **PQI** (11.6 mg, 27 μ mol) in ethanol (0.5 mL) were added Cu(ClO₄)₂·6H₂O (10.2 mg, 27 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **PQI-Cu** as a green powder (11.8 mg, 17 μ mol, 65%).

HRMS (ESI) m/z: [**PQI** + Cu + ClO₄]⁺ calcd. for C₂₈H₂₆ClCuN₄O₅ 596.08877; found 596.08606.

mp 201-205 °C.

PIP-Cu·CH₃CN ([Cu(PIP)(ClO₄)]ClO₄·CH₃CN)

To a solution of **PIP** (10.7 mg, 28 µmol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (11.9 mg, 32 µmol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol. The green powder was recrystallized with acetonitrile (1.0 mL) in the presence of NaClO₄·H₂O (11 mg, 90 µmol) at 4 °C under ether diffusion conditions to afford **PIP-Cu**·CH₃CN as green crystals suitable for X-ray crystallography (12.0 mg, 19 µmol, 68%).

Anal Calcd. for C₂₆H₂₇Cl₂CuN₅O₉ (**PIP-Cu**·CH₃CN): C, 45.39; H, 3.96; N, 10.18. Found: C, 45.06; H, 3.93; N, 10.12.

mp 212-214 °C.

PIQ-Cu ([Cu(PIQ)](ClO₄)₂)

To a solution of **PIQ** (19.8 mg, 23 μ mol) in ethanol (0.5 mL) were added Cu(ClO₄)₂·6H₂O (8.3 mg, 22 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **PIQ-Cu** as a blue powder (11.1 mg, 16 μ mol, 72%).

HRMS (ESI) m/z: [**PIQ** + Cu + ClO₄]⁺ calcd. for C₂₈H₂₆ClCuN₄O₅ 596.08877; found 596.08768.

mp 195-197 °C.

PII-Cu ([Cu(PII)(ClO₄)]ClO₄)

To a solution of **PII** (10.6 mg, 24 μ mol) in ethanol (0.5 mL) were added Cu(ClO₄)₂·6H₂O (11.9 mg, 32 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **PII-Cu** as a blue powder (10.6 mg, 15 μ mol, 63%).

HRMS (ESI) m/z: [**PII** + Cu + ClO₄]⁺ calcd. for C₂₈H₂₆ClCuN₄O₅ 596.08877; found 596.0874.

mp 195-197 °C.

QQP-Cu ([Cu(QQP)(ClO₄)]ClO₄)

To a solution of **QQP** (10.5 mg, 24 μ mol) in ethanol (0.5 mL) were added Cu(ClO₄)₂·6H₂O (9.4 mg, 25 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **QQP-Cu** as a green powder (9.1 mg, 13 μ mol, 54%).

HRMS (ESI) *m*/*z*: [**QQP** + Cu]⁺ calcd. for C₂₈H₂₆CuN₄O₁ 497.14026; found 497.14917. mp 181-184 °C.

QQQ-Cu ([Cu(QQQ)](ClO₄)₂)

To a solution of **QQQ** (13.1 mg, 27 μ mol) in ethanol (0.5 mL) were added Cu(ClO₄)₂·6H₂O (11.2 mg, 30 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **QQQ-Cu** as a green powder (1.5 mg, 2.0 μ mol, 7%).

HRMS (ESI) m/z: [**QQQ** + Cu + ClO₄]⁺ calcd. for C₃₂H₂₈ClCuN₄O₅ 646.10442; found 646.10210.

mp 201-204 °C.

QQI-Cu ([Cu(QQI)(ClO₄)]ClO₄)

To a solution of **QQI** (5.6 mg, 12 μ mol) in ethanol (0.5 mL) were added Cu(ClO₄)₂·6H₂O (5.2 mg, 14 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate

was collected by filtration and washed with ethanol to afford **QQI-Cu** as a green powder (3.0 mg, 4.0 μmol, 35%).

HRMS (ESI) m/z: [**QQI** + Cu + ClO₄]⁺ calcd. for C₃₂H₂₈ClCuN₄O₅ 646.10442; found 646.10282.

mp 180-183 °C.

QIP-Cu

To a solution of **QIP** (13.0 mg, 30 μ mol) in ethanol (0.5 mL) were added Cu(ClO₄)₂·6H₂O (14.1 mg, 38 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **QIP-Cu** as a green powder (10.1 mg, 14 μ mol, 48%).

HRMS (ESI) m/z: [**QIP** + Cu + ClO₄]⁺ calcd. for C₂₈H₂₆ClCuN₄O₅ 596.08877; found 596.0862.

mp 247-250 °C.

QIQ-Cu

To a solution of **QIQ** (13.1 mg, 27 μ mol) in ethanol (0.5 mL) were added Cu(ClO₄)₂·6H₂O (10.1 mg, 27 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **QIQ-Cu** as a green powder (10.0 mg, 13 μ mol,50%).

Anal Calcd. for C₃₂H₂₈Cl₂CuN₄O₉ (**QIQ-Cu**): C, 51.45; H, 3.78; N, 7.50. Found: C, 52.00; H, 3.74; N, 7.41.

QII-Cu

To a solution of **QII** (12.5 mg, 26 μ mol) in ethanol (0.5 mL) were added Cu(ClO₄)₂·6H₂O (9.6 mg, 26 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **QII-Cu** as a yellow green powder (6.6 mg, 8.8 μ mol, 34%).

Anal Calcd. for C₃₂H₂₈Cl₂CuN₄O₉ (**QII-Cu**): C, 51.45; H, 3.78; N, 7.50. Found: C, 51.72; H, 3.76; N, 7.30.

IIP-Cu

To a solution of **IIP** (11.4 mg, 26 μ mol) in ethanol (0.5 mL) were added Cu(ClO₄)₂·6H₂O (9.8 mg, 26 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **IIP-Cu** as a blue powder (11.9 mg, 17 μ mol, 65%).

Anal Calcd. for C₂₈H₂₇Cl₂CuN₄O_{9.5} (**IIP-Cu**·0.5H₂O): C, 47.64; H, 3.85; N, 7.94. Found: C, 47.87; H, 3.60; N, 7.93. mp 229-232 °C.

IIQ-Cu

To a solution of **IIQ** (12.5 mg, 26 μ mol) in ethanol (0.5 mL) were added Cu(ClO₄)₂·6H₂O (9.5 mg, 26 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol to afford **QQI-Cu** as a blue powder (14.9 mg, 20 μ mol, 78%).

Anal Calcd. for C₃₂H₃₀Cl₂CuN₄O₁₀ (**IIQ-Cu**·H₂O): C, 50.24; H, 3.95; N, 7.32. Found: C, 49.95; H, 3.71; N, 7.23. mp 228-232 °C.

III-Cu·CH₃CN ([Cu(III)(ClO₄)]ClO₄·CH₃CN)

To a solution of **III** (12.0 mg, 25 μ mol) in ethanol (0.5 mL) was added Cu(ClO₄)₂·6H₂O (10.9 mg, 29 μ mol) in ethanol (0.5 mL). After stirring for 5 min, resulting precipitate was collected by filtration and washed with ethanol. The green powder was recrystallized with acetonitrile (0.7 mL) in the presence of NaClO₄·H₂O (22 mg, 180 μ mol) at 4 °C under ether diffusion conditions to afford **PIP-Cu**·CH₃CN as green crystals suitable for X-ray crystallography (9.0 mg, 12 μ mol, 48%).

Anal Calcd. for C₃₂H₂₉Cl₂CuN₄O_{9.5} (**III-Cu**·0.5H₂O): C, 50.84; H, 3.87; N, 7.41. Found: C, 50.94; H, 3.72; N, 7.34. mp 229-231 °C.

X-ray crystallography

Table S1.Crystallographic data for $[Cu(PQP)(ClO_4)]ClO_4$ (PQP-Cu) and $[Cu(PQQ)](ClO_4)_2$ (PQQ-Cu)

	PQP-Cu	PQQ-Cu	
Formula	C24H24Cl2CuN4O9	C28H26Cl2CuN4O9	
FW	646.93	696.99	
Crystal system	triclinic	monoclinic	
Space group	<i>P-</i> 1	$P2_{1}/c$	
<i>a,</i> Å	8.9204(11)	19.122(5)	
b, Å	10.8760(14)	8.046(2)	
<i>c,</i> Å	14.6803(19)	19.183(5)	
α, deg	74.810(5)	90	
β, deg	77.611(6)	103.718(3)	
γ, deg	70.889(5)	90	
<i>V</i> , Å ³	1285.7(3)	2867.1(13)	
Ζ	2	4	
$D_{\rm calc}$, g cm ⁻³	1.671	1.615	
μ, mm ⁻¹	1.193	1.0104	
2θ _{max} , deg	55	54.9	
temp, K	173	173	
no. reflns collected	9838	21517	
no. reflns used	5564	6536	
no. of params	361	406	
Rint	0.0179	0.0270	
Final <i>R</i> 1 ($I > 2\sigma(I)$) ^{<i>a</i>}	0.0343	0.0570	
wR2 (all data) ^{b}	0.0995	0.1566	
GOF	1.014	1.065	

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. \quad {}^{b}wR2 = [\Sigma w[(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]]^{1/2}.$

	PIP-Cu ·CH ₃ CN	III-Cu·CH3CN
Formula	C26H27Cl2CuN5O9	C34H31Cl2CuN5O9
FW	687.98	788.10
Crystal system	triclinic	monoclinic
Space group	P-1	$P2_{1}/c$
<i>a,</i> Å	9.9443(1)	11.4717(13)
<i>b,</i> Å	11.5048(3)	13.2852(15)
<i>c,</i> Å	13.8412(1)	22.475(3)
α, deg	77.424(14)	90
β, deg	65.657(12)	103.2305(10)
γ, deg	80.071(14)	90
<i>V</i> , Å ³	1402.03(15)	3334.4(7)
Ζ	2	4
D_{calc} , g cm ⁻³	1.630	1.570
μ, mm ⁻¹	1.0328	0.8799
2θ _{max} , deg	54.9	55
temp, K	153	153
no. reflns collected	10945	33274
no. reflns used	6077	7630
no. of params	389	461
Rint	0.0226	0.0557
Final <i>R</i> 1 ($I > 2\sigma(I)$) ^{<i>a</i>}	0.0502	0.0572
wR2 (all data) ^{b}	0.1331	0.1697
GOF	1.124	1.081

Table S2. Crystallographic data for [Cu(**PIP**)(ClO₄)]ClO₄·CH₃CN (**PIP-Cu**·CH₃CN) and [Cu(**III**)(ClO₄)]ClO₄·CH₃CN (**III-Cu**·CH₃CN)

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. \quad {}^{b}wR2 = [\Sigma w[(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]]^{1/2}.$

PPP-Cu ^a	PPQ-Cu ^a	PQP-Cu	PQQ-Cu	PIP-Cu	III-Cu	
81.0	83.7	82.2	84.1	84.4	83.6	
91.1	97.5	100.3	100.9	94.7	98.4	
97.6	98.1	96.9	95.6	96.5	99.1	
75.0	77.3	77.0	78.9	77.6	76.0	
84.3	84.2	83.3	83.7	83.4	84.2	
82.7	83.5	81.5	82.3	83.7	82.4	
155.8	160.9	158.7	161.6	161.9	159.4	
163.0	158.8	155.2	157.1	162.0	156.7	
94.0	98.0	95.9	92.6	99.9	95.5	
102.4	99.3	105.4	106.2	96.3	103.7	
169.8	_	164.6	_	172.0	170.0	
109.1	_	112.5	_	88.1	87.5	
87.8	_	86.4	_	81.5	76.0	
86.3	_	81.5	_	85.6	84.4	
95.0	_	88.6	_	110.0	112.5	
	PPP-Cu ^a 81.0 91.1 97.6 75.0 84.3 82.7 155.8 163.0 94.0 102.4 169.8 109.1 87.8 86.3 95.0	PPP-CuaPPQ-Cua81.083.791.197.597.698.175.077.384.384.282.783.5155.8160.9163.0158.894.098.0102.499.3169.8-109.1-87.8-86.3-95.0-	PPP-CuaPPQ-CuaPQP-Cua81.083.782.291.197.5100.397.698.196.975.077.377.084.384.283.382.783.581.5155.8160.9158.7163.0158.8155.294.098.095.9102.499.3105.4169.8-164.6109.1-112.587.8-86.486.3-81.595.0-88.6	PPP-CuaPPQ-CuaPQQ-Cu81.083.782.284.191.197.5100.3100.997.698.196.995.675.077.377.078.984.384.283.383.782.783.581.582.3155.8160.9158.7161.6163.0158.8155.2157.194.098.095.992.6102.499.3105.4106.2169.8-164.6-109.1-112.5-87.8-86.4-86.3-88.6-95.0-88.6-	PPP-CuaPQQ-CuaPQQ-CuaPQQ-CuaPIP-Cua81.083.782.284.184.491.197.5100.3100.994.797.698.196.995.696.575.077.377.078.977.684.384.283.383.783.482.783.581.582.383.7155.8160.9158.7161.6161.9163.0158.8155.2157.1162.094.098.095.992.699.9102.499.3105.4106.296.3169.8-164.6-172.0109.1-112.5-88.187.8-86.4-81.586.3-81.5-85.695.0-88.6-110.0	PPP-CuaPPQ-CuaPQP-CuPQQ-CuPIP-CuIII-Cu81.083.782.284.184.483.691.197.5100.3100.994.798.497.698.196.995.696.599.175.077.377.078.977.676.084.384.283.383.783.484.282.783.581.582.383.782.4155.8160.9158.7161.6161.9159.4163.0158.8155.2157.1162.0156.794.098.095.992.699.995.5102.499.3105.4106.296.3103.7169.8-164.6-172.0170.0109.1-112.5-88.187.587.8-86.4-81.576.086.3-81.5-85.684.495.0-88.6-110.0112.5

Table S3. Selected Bond Angles (°) for PPP-Cu, PPQ-Cu, PQP-Cu, PQQ-Cu, PIP-Cu and III-Cu

^a Ref. S1.

Cyclic voltammetry

Fig. S1. Cyclic voltammogram of copper(II) complexes in acetonitrile (1 mM, scan rate 100 mV/s). (a) **PPP-Cu**, (b) **PPQ-Cu**, (c) **PPI-Cu**, (d) **PQP-Cu**, (e) **PQQ-Cu**, (f) **PQI-Cu**, (g) **QQP-Cu**, (h) **QQQ-Cu**, (i) **QQI-Cu**, (j) **PIP-Cu**, (k) **PIQ-Cu**, (l) **PII-Cu**, (m) **QIP-Cu**, (n) **QIQ-Cu**, (o) **QII-Cu**, (p) **IIP-Cu**, (q) **IIQ-Cu** and (r) **III-Cu**.

Absorption spectrum

Fig. S2. Absorption spectrum of copper(II) complexes in methanol (1 mM). (a) **PPP-Cu**, (b) **PPQ-Cu**, (c) **PPI-Cu**, (d) **PQP-Cu**, (e) **PQQ-Cu**, (f) **PQI-Cu**, (g) **QQP-Cu**, (h) **QQQ-Cu**, (i) **QQI-Cu**, (j) **PIP-Cu**, (k) **PIQ-Cu**, (l) **PII-Cu**, (m) **QIP-Cu**, (n) **QIQ-Cu**, (o) **QII-Cu**, (p) **IIP-Cu**, (q) **IIQ-Cu** and (r) **III-Cu**.

¹H/¹³C NMR spectrum

Fig. S3. ¹H/¹³C NMR spectrum of PPI in CDCl₃.

Fig. S4. ¹H NMR spectrum of 2-((2-pyridylmethyl)(2-quinolylmethyl)amino)ethanol in CDCl₃.

Fig. S5. ¹H/¹³C NMR spectrum of PQP in CDCl₃.

Fig. S6. ¹H/¹³C NMR spectrum of PQQ in CDCl₃.

Fig. S7. ¹H/¹³C NMR spectrum of PQI in CDCl₃.

Fig. S8. ¹H NMR spectrum of 2-((2-pyridylmethyl)(1-isoquinolylmethyl)amino)ethanol in CDCl₃.

Fig. S9. ¹H/¹³C NMR spectrum of PIP in CDCl₃.

Fig. S10. ¹H/¹³C NMR spectrum of PIQ in CDCl₃.

Fig. S11. ¹H/¹³C NMR spectrum of PII in CDCl₃.

Fig. S12. ¹H/¹³C NMR spectrum of QQP in CDCl₃.

Fig. S13. ¹H/¹³C NMR spectrum of QQQ in CDCl₃.

Fig. S14. ¹H/¹³C NMR spectrum of QQI in CDCl₃.

Fig. S15. ¹H NMR spectrum of 2-((1-isoquinolylmethyl)amino)ethanol in CDCl₃.

Fig. S16. ¹H NMR spectrum of 2-((2-quinolylmethyl)(1-isoquinolylmethyl)amino)ethanol in CDCl₃.

Fig. S17. ¹H/¹³C NMR spectrum of QIP in CDCl₃.

Fig. S18. ¹H/¹³C NMR spectrum of QIQ in CDCl₃.

Fig. S19. ¹H/¹³C NMR spectrum of QII in CDCl₃.

Fig. S20. ¹H NMR spectrum of 2-(bis(1-isoquinolylmethyl)amino)ethanol in CDCl₃.

Fig. S21. ¹H/¹³C NMR spectrum of IIP in CDCl₃.

Fig. S22. ¹H/¹³C NMR spectrum of IIQ in CDCl₃.

Fig. S23. ¹H/¹³C NMR spectrum of III in CDCl₃.

References

S1. Y. Mikata, T. Fujimoto, N. Imai and S. Kondo, *Eur. J. Inorg. Chem.* 4310-4317 (2012).