Support information for

Ni(OH)₂-derived Lamellar MoS₂/Ni₃S₂/NF with Fe-doping Hetero-junction Catalysts for Efficient Overall Water Splitting

Minghao Dou ^a, Mengjie Yao ^a, Kai Ding ^a, Yuye Cheng ^a, Hongyu Shao ^a, Shenjie Li ^{a*}, and Yanyan Chen ^{a*}

^a School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.

*Corresponding Author Email: yanyanchen@hfut.edu.cn; shenjieli@hfut.edu.cn; <a href="mailto:shenjieli@hfut.edu.

Contents

Figure S1. XRD pattern of Ni(OH) ₂ /NF	·S4
Figure S2. SEM images of (a) Ni(OH) ₂ /NF, (b) MoS_2/Ni_3S_2 , (c) a	and
(d) Fe-MoS ₂ /Ni ₃ S ₂ /NF	S5
Figure S3. TEM images (a-c) and HRTEM image (d) of same	ple
$MoS_2/Ni_3S_2/NF.$	S6

Figure S4. Full XPS spectra of sample MoS₂/Ni₃S₂/NF, MoS₂/Fe-Ni₃S₂/NF (a) and Ni(OH)₂/NF (b). Ni 2p_{3/2} (c) and O 1s (d) spectra of sample Ni(OH)₂/NF.·····S7

Figure S5. SEM images, elemental mapping images and EDS spectrum of sample MoS₂/Fe-Ni₃S₂/NF.·····S8

Figure S6. CV (Cyclic voltammograms) curves of various samples at scan rates ranging from 20 to 100 mV·s⁻¹ with an interval point of 20 mV·s⁻¹ in 1.0 M KOH for the determination of the double layer capacitance: (a) bare NF, (b) Ni(OH)₂/NF, (c) MoS₂/Ni₃S₂/NF, and (d) Fe-MoS₂/Ni₃S₂/NF.·····S9

Figure S7. Mott-Schottky curves of MoS₂/Ni₃S₂/NF (a) and MoS₂/Fe-Ni₃S₂/NF (b).....S10

Figure S8. CV curves of MoS₂/Ni₃S₂/NF and MoS₂/Fe-Ni₃S₂/NF (a), corresponding areas of redox features considered for the calculation of the number of active sites (b), absolute ECSA calculated by dividing the elementary charge of an electron for MoS₂/Ni₃S₂/NF and MoS₂/Fe-Ni₃S₂/NF (c), TOF values at different potentials for MoS₂/Ni₃S₂/NF and MoS₂/Fe-Ni₃S₂/NF and MoS₂/Fe-Ni₃S₂/NF (d).....S11 **Figure S9.** Chronopotentiometry respones for OER of MoS₂/Fe-Ni₃S₂/NF for 100 s (a), plots of sampled current densities against potential for OER of MoS₂/Fe-Ni₃S₂/NF and MoS₂/Fe-Ni₃S₂/NF (b), the corresponding Tafel plots for OER (c), Chronopotentiometry respones for HER of MoS₂/Fe-Ni₃S₂/NF for 100 s (d), plots of sampled current densities against potential for HER of MoS₂/Fe-Ni₃S₂/NF and MoS₂/Ni₃S₂/NF (e), the Corresponding Tafel plots for HER (f)......S14

Figure S10. Faradaic efficiency oxygen production measurement of MoS₂/Fe-Ni₃S₂/NF (a), Faradaic efficiency hydrogen production measurement of MoS₂/Fe-Ni₃S₂/NF (b), Faraday efficiency test setup and its hydrogen production stage diagram (c).....S13 **Figure S11.** XRD pattern of MoS₂/Fe-Ni₃S₂/NF before and after OER durability testing (20 h) (a) and MoS₂/Fe-Ni₃S₂/NF before and after HER durability testing (20 h) (b).....S14 **Figure S12.** TEM images of MoS₂/Fe-Ni₃S₂/NF (a-c) and MoS₂/Fe-Ni₃S₂/NF (d-f) after OER durability testingS15 **Figure S13.** XPS spectra of Mo 3d (a), Ni 2p (b), S 2p (c), Fe 2p (d) for MoS₂/Fe-Ni₃S₂/NF after OER durability testing (20 h).....S16 **Figure S14.** XPS spectra of Mo 3d (a), Ni 2p (b), S 2p (c), Fe 2p (d)

for MoS₂/Fe-Ni₃S₂/NF after HER durability testing (20 h).·····S17

Figure S1. XRD pattern of Ni(OH)₂/NF.

Figure S2. SEM images of (a) $Ni(OH)_2/NF$, (b) MoS_2/Ni_3S_2 , (c) and (d) Fe-MoS₂/Ni₃S₂/NF.

Figure S4. Full XPS spectra of sample $MoS_2/Ni_3S_2/NF$, $MoS_2/Fe-Ni_3S_2/NF$ (a) and $Ni(OH)_2/NF$ (b) Ni $2p_{3/2}$ (c) and O 1s (d) spectra of sample $Ni(OH)_2/NF$.

Figure S5. SEM images, elemental mapping images and EDS spectrum of sample $MoS_2/Fe-Ni_3S_2/NF$.

Figure S6. CV (Cyclic voltammograms) curves of various samples at scan rates ranging from 20 to 100 mV·s⁻¹ with an interval point of 20 mV·s⁻¹ in 1.0 M KOH for the determination of the double layer capacitance: (a) bare NF, (b) Ni(OH)₂/NF, (c) MoS₂/Ni₃S₂/NF, and (d) $MoS_2/Fe-Ni_3S_2/NF$.

Figure S7. Mott–Schottky curves of $MoS_2/Ni_3S_2/NF$ (a) and $MoS_2/Fe-Ni_3S_2/NF$ (b).

Figure S8. CV curves of $MoS_2/Ni_3S_2/NF$ and $MoS_2/Fe-Ni_3S_2/NF$ (a), corresponding areas of redox features considered for the calculation of the number of active sites (b), absolute ECSA calculated by dividing the elementary charge of an electron for $MoS_2/Ni_3S_2/NF$ and $MoS_2/Fe-Ni_3S_2/NF$ (c), TOF values at different potentials for $MoS_2/Ni_3S_2/NF$ and $MoS_2/Ni_3S_2/NF$ and $MoS_2/Fe-Ni_3S_2/NF$ (d).

Figure **S9**. Chronopotentiometry respones for OER of MoS₂/Fe-Ni₃S₂/NF for 100 s (a), plots of sampled current densities against potential for OER of MoS₂/Fe-Ni₃S₂/NF and MoS₂/Ni₃S₂/NF (b), the corresponding Tafel plots for OER (c), Chronopotentiometry respones for HER of MoS₂/Fe-Ni₃S₂/NF for 100 s (d), plots of densities potential sampled current against for HER of MoS₂/Fe-Ni₃S₂/NF and MoS₂/Ni₃S₂/NF (e), the Corresponding Tafel plots for HER (f).

Figure S10. Faradaic efficiency oxygen production measurement of $MoS_2/Fe-Ni_3S_2/NF$ (a), Faradaic efficiency hydrogen production measurement of $MoS_2/Fe-Ni_3S_2/NF$ (b), Faraday efficiency test setup and its hydrogen production stage diagram (c).

Figure S11. XRD patterns of $MoS_2/Fe-Ni_3S_2/NF$ before and after OER durability testing (20 h) (a) and $MoS_2/Fe-Ni_3S_2/NF$ before and after HER durability testing (20h) (b).

Figure S12. TEM images of $MoS_2/Fe-Ni_3S_2/NF$ (a-c) and $MoS_2/Fe-Ni_3S_2/NF$ (d-f) after OER durability testing.

Figure S13. XPS spectra of Mo 3d (a), Ni 2p (b), S 2p (c), Fe 2p (d) for $MoS_2/Fe-Ni_3S_2/NF$ after OER durability testing (20 h).

Figure S14. XPS spectra of Mo 3d (a), Ni 2p (b), S 2p (c), Fe 2p (d) for $MoS_2/Fe-Ni_3S_2/NF$ after HER durability testing (20 h).