Ln^{III}/Mn^{II}-Ln^{III} complexes derived from salicylic azo dye ligand:

synthesis, structures, magnetic and fluorescent properties

Xiaoman Kuang, Youhong Li, Meng Yang*, Wen Dong*, Jidong Leng*

Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R.China.

Complex	1 Dy	2 Tb	3 Dy	4 Tb	
Formula	C ₆₀ H ₇₈ N	$_{30}O_{33}Ln_{2}$	$C_{54}H_{70}Mn_{2}$	$n_2N_{36}O_{34}Ln_2$	
Formula weight	2072.52	2065.38	2202.34	2195.20	
$T(\mathbf{K})$	100.00(11)	150.00(10)	100.00(10)	100.00(10)	
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic	
Space group	$P2_{1}/C$	$P2_{1}/C$	$P\overline{1}$	$P\overline{1}$	
<i>a</i> (Å)	18.5421(4)	18.5550(4)	11.6378(2)	11.6539(3)	
<i>b</i> (Å)	24.3774(5)	24.2497(5)	13.8140(2)	13.7912(3)	
<i>c</i> (Å)	20.5877(5)	20.6085(5)	15.5581(2)	15.5805(4)	
α (deg)	90	90	112.2770(10)	112.238(2)	
β (deg)	100.629(2)	100.863(2)	94.1640(10)	94.0138(19)	
$\gamma(\text{deg})$	90	90	108.0530(10)	108.238(2)	
$\theta(\text{deg})$	2.179-25.010	2.158-30.928	3.144-77.05	4.594-61.866	
$V(Å^3)$	9146.1(4)	9106.7(4)	2148.59(6)	2147.48(10)	
Ζ	4	4	1	2	
$D_{\rm c}~({ m g}\cdot{ m cm}^{-3})$	1.505	1.506	1.702	1.697	
$\mu \ (\mathrm{mm}^{-1})$	1.714	1.634	12.383	2.017	
Unique reflns,	16124	28828	9088	13599	
$R_{\rm int}$	0.0524	0.0543	0.0425	0.0692	
GOF	1.015	1.016	1.031	1.012	
R_1 (I > 2 σ (I))	0.0648	0.0618	0.0506	0.0434	
$wR_2(I > 2\sigma(I))$	0.1534	0.1379	0.1437	0.1092	
R_1 (all data)	0.0846	0.0964	0.0561	0.0553	
wR_2 (all data)	0.1665	0.1506	0.1545	0.1142	

Table S1 Crystallographic data and structure refinement parameters summary for complexes 1-4.

 $R_1 = \Sigma(||F_o| - |F_c||) / \Sigma |F_o| \quad wR_2 = [\Sigma w(|F_o|^2 - |F_c|^2)^2 / \Sigma w(|F_o|^2)^2]^{1/2}$

Table S2 Selected bond	lengths	(Å) and	angles (°) for complex 1 .
------------------------	---------	---------	-----------	--------------------------

Bond distances				
Dy(1)–O(1)	2.346(6)	Dy(1)–O(2)	2.395(6)	
Dy(1)–O(4)	2.314(5)	Dy(1)–O(5)	2.405(5)	
Dy(1)–O(7)	2.309(5)	Dy(1)–O(8)	2.463(5)	

Dy(1)-O(10)	2.398(6)	Dy(1)–O(11)	2.418(6)
Dy(2)–O(16)	2.325(5)	Dy(2)–O(17)	2.411(6)
Dy(2)–O(19)	2.320(5)	Dy(2)–O(20)	2.424(5)
Dy(2)–O(22)	2.309(6)	Dy(2)–O(23)	2.472(6)
Dy(2)-O(25)	2.408(6)	Dy(2)–O(26)	2.385(5)
Angles			
O(1)-Dy(1)-O(2)	71.6(2)	O(1)-Dy(1)-O(4)	79.27(19)
O(1)-Dy(1)-O(5)	118.9(2)	O(1)-Dy(1)-O(7)	148.02(18)
O(1)-Dy(1)-O(8)	79.76(19)	O(1)-Dy(1)-O(10)	77.2(2)
O(1)-Dy(1)-O(11)	136.6(2)	O(2)-Dy(1)-O(4)	114.1(2)
O(2)-Dy(1)-O(5)	72.82(19)	O(2)-Dy(1)-O(7)	139.76(19)
O(2)-Dy(1)-O(8)	147.00(18)	O(2)-Dy(1)-O(10)	84.1(2)
O(2)-Dy(1)-O(11)	74.2(2)	O(4)-Dy(1)-O(5)	72.30(18)
O(4)-Dy(1)-O(7)	79.81(19)	O(4)-Dy(1)-O(8)	74.95(18)
O(4)-Dy(1)-O(10)	143.5(2)	O(4)-Dy(1)-O(11)	140.24(19)
O(5)-Dy(1)-O(7)	76.66(18)	O(5)-Dy(1)-O(8)	137.56(17)
O(5)-Dy(1)-O(10)	144.0(2)	O(5)-Dy(1)-O(11)	73.9(2)
O(7)-Dy(1)-O(8)	71.59(18)	O(7)-Dy(1)-O(10)	107.1(2)
O(7)-Dy(1)-O(11)	72.5(2)	O(8)-Dy(1)-O(10)	73.74(19)
O(8)-Dy(1)-O(11)	120.3(2)	O(10)-Dy(1)-O(11)	73.4(2)
O(16)-Dy(2)-O(17)	72.61(19)	O(16)-Dy(2)-O(19)	77.65(18)
O(16)-Dy(2)-O(20)	118.08(19)	O(16)-Dy(2)-O(22)	147.51(19)
O(16)-Dy(2)-O(23)	79.32(19)	O(16)-Dy(2)-O(25)	135.2(2)
O(16)-Dy(2)-O(26)	78.2(2)	O(17)-Dy(2)-O(19)	115.04(19)
O(17)-Dy(2)-O(20)	73.92(18)	O(17)-Dy(2)-O(22)	139.22(19)
O(17)-Dy(2)-O(23)	147.79(18)	O(17)-Dy(2)-O(25)	72.5(2)
O(17)-Dy(2)-O(26)	85.1(2)	O(19)-Dy(2)-O(20)	71.70(17)
O(19)-Dy(2)-O(22)	80.44(19)	O(19)-Dy(2)-O(23)	72.75(18)
O(19)-Dy(2)-O(25)	143.66(19)	O(19)-Dy(2)-O(26)	141.63(19)
O(20)-Dy(2)-O(22)	76.38(19)	O(20)-Dy(2)-O(23)	135.07(17)
O(20)-Dy(2)-O(25)	77.28(19)	O(20)-Dy(2)-O(26)	146.61(19)
O(22)-Dy(2)-O(23)	71.40(19)	O(22)-Dy(2)-O(25)	74.2(2)
O(22)-Dy(2)-O(26)	106.0(2)	O(23)-Dy(2)-O(25)	121.0(2)
O(23)-Dy(2)-O(26)	73.83(19)	O(25)-Dy(2)-O(26)	71.7(2)

Table S3 Selected bond lengths (Å) and angles (°) for complex 2.

Bond distances				
Tb(1)–O(1)	2.336(4)	Tb(1)–O(2)	2.382(4)	
Tb(1)–O(4)	2.295(4)	Tb(1)–O(5)	2.403(4)	
Tb(1)–O(7)	2.291(4)	Tb(1)–O(8)	2.455(3)	
Tb(1)–O(10)	2.369(4)	Tb(1)–O(11)	2.393(4)	
Tb(2)–O(16)	2.320(4)	Tb(2)–O(17)	2.402(5)	
Tb(2)–O(19)	2.302(4)	Tb(2)–O(20)	2.409(4)	

Tb(2)–O(22)	2.278(5)	Tb(2)–O(23)	2.475(5)
Tb(2)–O(25)	2.405(5)	Tb(2)–O(26)	2.360(4)
Angles			
O(1)-Tb(1)-O(2)	71.77(15)	O(1)-Tb(1)-O(4)	79.84(15)
O(1)-Tb(1)-O(5)	120.41(15)	O(1)-Tb(1)-O(7)	148.05(13)
O(1)-Tb(1)-O(8)	78.95(14)	O(1)-Tb(1)-O(10)	76.72(18)
O(1)-Tb(1)-O(11)	134.99(16)	O(2)-Tb(1)-O(4)	113.80(18)
O(2)-Tb(1)-O(5)	72.90(14)	O(2)-Tb(1)-O(7)	139.76(14)
O(2)-Tb(1)-O(8)	146.99(13)	O(2)-Tb(1)-O(10)	85.12(18)
O(2)-Tb(1)-O(11)	73.87(19)	O(4)-Tb(1)-O(5)	72.70(13)
O(4)-Tb(1)-O(7)	80.47(13)	O(4)-Tb(1)-O(8)	74.54(12)
O(4)-Tb(1)-O(10)	143.21(14)	O(4)-Tb(1)-O(11)	141.68(14)
O(5)-Tb(1)-O(7)	76.60(13)	O(5)-Tb(1)-O(8)	137.35(12)
O(5)-Tb(1)-O(10)	144.03(14)	O(5)-Tb(1)-O(11)	74.48(15)
O(7)-Tb(1)-O(8)	71.67(12)	O(7)-Tb(1)-O(10)	105.82(17)
O(7)-Tb(1)-O(11)	73.13(16)	O(8)-Tb(1)-O(10)	73.43(14)
O(8)-Tb(1)-O(11)	120.58(16)	O(10)-Tb(1)-O(11)	72.19(16)
O(16)-Tb(2)-O(17)	72.74(16)	O(16)-Tb(2)-O(19)	78.28(13)
O(16)-Tb(2)-O(20)	118.55(15)	O(16)-Tb(2)-O(22)	147.23(18)
O(16)-Tb(2)-O(23)	78.84(16)	O(16)-Tb(2)-O(25)	135.60(18)
O(16)-Tb(2)-O(26)	77.98(16)	O(17)-Tb(2)-O(19)	114.76(15)
O(17)-Tb(2)-O(20)	73.26(15)	O(17)-Tb(2)-O(22)	139.43(18)
O(17)-Tb(2)-O(23)	147.79(15)	O(17)-Tb(2)-O(25)	72.8(2)
O(17)-Tb(2)-O(26)	85.13(19)	O(19)-Tb(2)-O(20)	71.86(13)
O(19)-Tb(2)-O(22)	80.20(16)	O(19)-Tb(2)-O(23)	72.79(15)
O(19)-Tb(2)-O(25)	142.60(15)	O(19)-Tb(2)-O(26)	142.37(16)
O(20)-Tb(2)-O(22)	76.88(16)	O(20)-Tb(2)-O(23)	135.57(14)
O(20)-Tb(2)-O(25)	76.25(15)	O(20)-Tb(2)-O(26)	145.71(16)
O(22)-Tb(2)-O(23)	71.33(17)	O(22)-Tb(2)-O(25)	73.9(2)
O(22)-Tb(2)-O(26)	105.84(18)	O(23)-Tb(2)-O(25)	121.6(2)
O(23)-Tb(2)-O(26)	74.27(19)	O(25)-Tb(2)-O(26)	70.8(2)

Table S4 Selected bond lengths (Å) and angles (°) for complex 3.

Bond distances			
Dy(1)–O(1)	2.372(3)	Dy(1)–O(2)	2.270(3)
Dy(1)–O(4)	2.317(4)	Dy(1)–O(5)	2.270(4)
Dy(1)–O(7)	2.343(4)	Dy(1)–O(8)	2.274(4)
Dy(1)–O(10)	2.325(4)	Dy(1)–O(11)	2.326(4)
Mn(1)–O(17)	2.103(5)	Mn(1)–N(4)	2.224(5)
Mn(1) - N(6)	2.481(5)	Mn(1)-O(17a)	2.103(5)
Mn(1)-N(4a)	2.224(5)	Mn(1)-N(6a)	2.481(5)
Mn(2)–O(12)	2.140(4)	Mn(2)–O(13)	2.173(5)
Mn(2)–O(14)	2.206(4)	Mn(2)–O(12b)	2.140(4)

Mn(2)–O(13b)	2.173(5)	Mn(2)–O(14b)	2.206(4)
Angles			
O(1)-Dy(1)-O(2)	72.87(12)	O(1)-Dy(1)-O(4)	144.53(13)
O(1)-Dy(1)-O(5)	76.14(13)	O(1)-Dy(1)-O(7)	141.27(14)
O(1)-Dy(1)-O(8)	76.03(13)	O(1)-Dy(1)-O(10)	120.41(15)
O(1)-Dy(1)-O(11)	72.85(13)	O(2)-Dy(1)-O(4)	138.92(14)
O(2)-Dy(1)-O(5)	146.30(14)	O(2)-Dy(1)-O(7)	79.62(14)
O(2)-Dy(1)-O(8)	80.67(14)	O(2)-Dy(1)-O(10)	71.81(14)
O(2)-Dy(1)-O(11)	104.84(14)	O(4)-Dy(1)-O(5)	74.71(15)
O(4)-Dy(1)-O(7)	72.21(14)	O(4)-Dy(1)-O(8)	117.27(15)
O(4)-Dy(1)-O(10)	72.04(16)	O(4)-Dy(1)-O(11)	81.63(15)
O(5)-Dy(1)-O(7)	119.28(15)	O(5)-Dy(1)-O(8)	79.29(14)
O(5)-Dy(1)-O(10)	137.58(16)	O(5)-Dy(1)-O(11)	77.89(14)
O(7)-Dy(1)-O(8)	73.00(16)	O(7)-Dy(1)-O(10)	73.97(18)
O(7)-Dy(1)-O(11)	141.94(16)	O(8)-Dy(1)-O(10)	140.05(16)
O(8)-Dy(1)-O(11)	144.90(14)	O(10)-Dy(1)-O(11)	71.91(16)
N(4)-Mn(1)-N(6)	69.01(16)	N(4)-Mn(1)-O(17)	90.26(19)
N(6)-Mn(1)-O(17)	93.44(16)	O(12)-Mn(2)-O(13)	89.18(17)
O(12)-Mn(2)-O(14)	88.20(18)	O(13)-Mn(2)-O(14)	91.65(19)

a : 2-x,2-y,2-z; b : 2-x,2-y,1-z.

Table S5 Selected bond lengths (Å) and angles (°) for complex 4.

Bond distances			
Tb(1)–O(1)	2.387(3)	Tb(1)–O(2)	2.284(3)
Tb(1)–O(4)	2.343(3)	Tb(1)–O(5)	2.293(3)
Tb(1)–O(7)	2.360(3)	Tb(1)–O(8)	2.285(3)
Tb(1)-O(10)	2.351(3)	Tb(1)–O(11)	2.350(3)
Mn(1)–O(17)	2.102(4)	Mn(1)–N(4)	2.223(4)
Mn(1)–N(6)	2.486(3)	Mn(1)–O(17a)	2.102(4)
Mn(1)-N(4a)	2.223(4)	Mn(1)–N(6a)	2.486(3)
Mn(2)–O(12)	2.147(3)	Mn(2)–O(13)	2.176(3)
Mn(2)–O(14)	2.198(3)	Mn(2)–O(12b)	2.147(3)
Mn(2)–O(13b)	2.176(3)	Mn(2)–O(14b)	2.198(3)
Angles			
O(1)-Tb(1)-O(2)	72.56(9)	O(1)-Tb(1)-O(4)	144.71(9)

O(1)-Tb(1)-O(5)	75.97(10)	O(1)-Tb(1)-O(7)	141.71(10)
O(1)-Tb(1)-O(8)	76.51(10)	O(1)-Tb(1)-O(10)	119.60(11)
O(1)-Tb(1)-O(11)	72.66(10)	O(2)-Tb(1)-O(4)	139.28(10)
O(2)-Tb(1)-O(5)	145.96(11)	O(2)-Tb(1)-O(7)	79.15(10)
O(2)-Tb(1)-O(8)	80.84(10)	O(2)-Tb(1)-O(10)	71.88(10)
O(2)-Tb(1)-O(11)	104.83(10)	O(4)-Tb(1)-O(5)	74.70(11)
O(4)-Tb(1)-O(7)	72.60(10)	O(4)-Tb(1)-O(8)	116.39(11)
O(4)-Tb(1)-O(10)	72.74(11)	O(4)-Tb(1)-O(11)	82.10(10)
O(5)-Tb(1)-O(7)	120.21(11)	O(5)-Tb(1)-O(8)	79.51(10)
O(5)-Tb(1)-O(10)	137.25(11)	O(5)-Tb(1)-O(11)	77.35(10)
O(7)-Tb(1)-O(8)	72.49(12)	O(7)-Tb(1)-O(10)	73.64(13)
O(7)-Tb(1)-O(11)	142.36(12)	O(8)-Tb(1)-O(10)	140.46(11)
O(8)-Tb(1)-O(11)	145.01(10)	O(10)-Tb(1)-O(11)	71.44(12)
N(4)-Mn(1)-N(6)	69.05(12)	N(4)-Mn(1)-O(17)	90.25(15)
N(6)-Mn(1)-O(17)	94.21(13)	O(12)-Mn(2)-O(13)	89.58(13)
O(12)-Mn(2)-O(14)	89.30(13)	O(13)-Mn(2)-O(14)	91.90(13)

a : 2-x,2-y,2-z; b : 2-x,2-y,1-z.

Table S6 SHAPE analysis for complexes 1–4.

Complex	Ln	SAPR-8	TDD-8	JBTPR-8	BTPR-8
1	Dy1	0.452	1.509	2.026	1.659
	Dy2	0.572	1.397	2.001	1.609
2	Tb1	0.547	1.320	1.961	1.563
	Tb2	0.581	1.391	1.862	1.554
3	Dy1	0.392	1.638	1.901	1.321
4	Tb1	0.400	1.632	1.896	1.324

Figure S1 The hydrogen-bonds and the π - π stacking interaction in complex 1.

Figure S2 Crystal structure of complex 2. Hydrogen atoms and uncoordinated solvent molecules were omitted for clarity reason.

Figure S3 The hydrogen-bonds and the π - π stacking interaction in complex 2.

Figure S4 The hydrogen-bonds and the π - π stacking interaction in complex **3**.

Figure S5 Crystal structure of complex 4. Hydrogen atoms and uncoordinated solvent molecules

were omitted for clarity reason.

Figure S6 The hydrogen-bonds and the π - π stacking interaction in complex 4.

Figure S7 Powder X-ray diffraction (PXRD) patterns for complexes 1–4.

Figure S8 *M* versus *H* plot at 2, 3, 5 K for complexes 1–4.

Figure S9 Temperature dependence of the in-phase and out-phase in zero field for complex 1.

Figure S10 Temperature-dependence of in-phase and out-phase in zero field for complex 2.

Figure S11Temperature dependence of the in-phase and out-phase in zero field for complex 3.

Figure S12 Temperature-dependence of in-phase and out-phase in zero field for complex 4.

Figure S13 AC susceptibility data for complexes 1–4 at 2 K under dc applied fields in the range 1-1000/10000 Hz.

Figure S14 Temperature-dependence of in-phase and out-phase in 1000Oe dc field for complex 1.

Figure S15 Temperature-dependence of in-phase and out-phase in 1000Oe dc field for complex 2.

Figure S16 Temperature-dependence of in-phase and out-phase in 1000Oe dc field for complex 3.

Figure S17 Temperature-dependence of in-phase and out-phase in 1000 Oe dc field for complex 4.

Figure S18 Frequency dependence of χ' ac susceptibility components under 1000 Oe dc field for complexes of 1–4.

		Dy1			Dy2	
	<i>E</i> / cm ⁻¹	g-tensors	m _J	<i>E</i> / cm ⁻¹	g-tensors	m _J
		0.002			0.001	
1	0	0.003	$\pm 15/2$	0	0.002	$\pm 15/2$
		19.736			19.715	
		0.036			0.049	
2	161.7	0.044	$\pm 13/2$	160.8	0.053	$\pm 13/2$
		17.157			17.008	
		0.463			1.914	
3	277.9	0.652	$\pm 11/2$	275.6	3.250	$\pm 11/2$
		13.780			12.086	
		2.739			0.124	
4	335.1	4.819	$\pm 5/2$	312.9	4.234	$\pm 1/2$
		13.543			13.300	
		1.112			0.264	
5	371.1	2.728	$\pm 7/2$	358.9	2.996	$\pm 7/2$
		13.908			13.539	
		0.680			10.006	
6	401.0	3.746	$\pm 1/2$	375.9	7.124	$\pm 5/2$
		15.313			2.662	
		0.644			1.298	
7	444.1	1.302	$\pm 3/2$	418.8	1.896	$\pm 3/2$
		17.961			17.882	
		0.015			0.020	
8	589.8	0.024	$\pm 9/2$	564.0	0.037	$\pm 9/2$
		19.503			19.588	

Table S7 The energies and g-tensors (g_x, g_y, g_z) of the low-lying spin-orbit states for individual Dy^{III} fragments in complex 1.

Table S8 The energies and g-tensors (g_x, g_y, g_z) of the low-lying spin-orbit states for individual

	Tb1 of 2			Tb2 of 2		
	$E / \operatorname{cm}^{-1}$	g-tensors	m_J	$E / \operatorname{cm}^{-1}$	g-tensors	m_J
1	0 0.089	0.000 0.000 17.762	±6	0 0.087	0.000 0.000 17.758	±6
2	151.1 152.0	0.000 0.000 14.820	±5	127.8 128.4	0.000 0.000 15.322	±5
3	211.8 213.8	0.000 0.000 14.256	±4	170.1 171.7	0.000 0.000 13.011	±4
4	293.7 304.1	0.000 0.000 9.122	±3	260.6 267.6	0.000 0.000 9.222	±3
5	372.8 406.2	0.000 0.000 5.665	±2	336.6 366.2	0.000 0.000 5.573	±2
6	436.7 540.3	0.000 0.000 2.801	±1	396.6 509.2	0.000 0.000 2.879	±1
7	545.0			513.2		0

Tb^{III} fragments in complex 2.

Table S9 Wave functions with definite projection of the total moment $|m_J\rangle$ for the lowest twodoublets of Dy1, Dy2, Tb1, Tb2 fragments.

	<i>E</i> / cm ⁻¹	Wave functions	
D1	0	97.8% ±15/2>	
Dyl	161.7	84.8% ±13/2>+9.4% ±11/2>	
D2	0	97.4% ±15/2>	
Dyz	160.8	85.9% ±13/2>+7.6% ±11/2>+5.5% ±9/2>	
	0	98% ±6>	
	0.089		
101	151.1	85% ±5>+8% ±4>	
	152.0		
	0	97% ±6>	
ть а	0.106		
102	116.2	70% ±5>+16% ±4>+6% ±3>	
	116.6		

Figure S19 Room-temperature luminescence spectra of complexes 1 and 3.