Supporting Information

Strain and electric field induced electronic properties

modifications in two-dimensional Janus SZrAZ₂ (A = Si, Ge;

Z= P, As) monolayers

Zhen Gao^a , YaoHe^{a,*}, and Kai Xiong^{b,*}

^aDepartment of Physics, Yunnan University, Kunming 650091, People's Republic of China.

^bMaterials Genome Institute, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.

*E-mail: yhe@ynu.edu.cn; xiongkai@ynu.edu.cn

Fig S1 Phonon dispersions of the (a) $SZrSiN_2$ and (b) $SZrGeN_2$ monolayers, respectively.

Fig S2 Variation of the energy as a function of time for the Janus (a)SZrSiP₂, (b)SZrSiAs₂, (c)SZrGeP₂, and (d)SMoGeAs₂ monolayers at 500K. The insets are the top and side views of the structure at the end of the AIMD simulation.

Fig S3 Projected band structure of 2D Janus (a) $SZrSiP_2$, (b) $SZrSiAs_2$, (c) $SZrGeP_2$ and (d) $SMoGeAs_2$ monolayers.

Fig. S4 Electronic band structure of 2D Janus (a) $SZrSiP_2$, (b) $SZrSiAs_2$, (c) $SZrGeP_2$, and (d) $SZrGeAs_2$ by PBE+SOC and HSE06+SOC methods.

Fig S5 strain-stress curve for 2D Janus (a) $SZrSiP_2$, (b) $SZrSiAs_2$, (c) $SZrGeP_2$ and (d) $SZrGeAs_2$ monolayers.

Fig S6 Phonon spectrum of SZrSiP₂, SZrSiAs₂, SZrGeP₂, and SZrGeAs₂ monolayers under strain of (a-d) -10% and (e-h) +10%, respectively.

Fig S7 Electronic band structure under biaxial strain of 2D Janus (a) SZrSiP₂, (b) SZrSiAs₂, (c) SZrGeP₂, and (d) SZrGeAs₂ monolayers.

Fig S8 Orbital projected band structures for $SZrSiP_2$ monolayer under different strengths of different strains of (a) -8%, (b) -4%, (c) 4% and (d) 8%.

Fig S9 Orbital projected band structures for SZrSiAs2 monolayer under different strengths of

different strains of (a) -8%, (b) -4%, (c) 4% and (d) 8%.

Fig S10 Orbital projected band structures for SZrGeP₂ monolayer under different strengths of different strains of (a) -8%, (b) -4%, (c) 4% and (d) 8%.

Fig S11 Orbital projected band structures for SZrGeAs₂ monolayer under different strengths of different strains of (a) -8%, (b) -4%, (c) 4% and (d) 8%.

Fig S12 Band gap under external electric field of 2D SZrSiP₂ and SZrGeP₂ by HSE method.

Fig S13 Electronic band structure under electric field of 2D Janus (a) SZrSiP₂, and (b) SZrGeP₂ monolayers.

Fig S14 Orbital projected band structures for $SZrSiP_2$ monolayer under different strengths of different electric field of (a) -10V/nm, (b) -5V/nm, (c) +5V/nm, (d) +10V/nm, (e) +15V/nm and (f)

+18V/nm.

Fig S15 Orbital projected band structures for SZrGeP₂ monolayer under different strengths of different electric field of (a) -10V/nm, (b) -5V/nm, (c) +5V/nm, (d) +10V/nm, (e) +15V/nm and (f) +18V/nm.

Fig S16 The calculation of carrier mobility is carried out in rectangular cell in the black dotted box, the x and y directions also been indicate.

Fig S17 The uniaxial strain $\varepsilon_{uni}^{x/y}$ (a) dependent energy shifting (b) CBM/VBM positions (b) of SZrAZ₂ along the two transport directions x and y. The fitting curves are presented by the solid lines.