Electronic Supplementary Information

Synergy of redox-activity and hemilability in thioamidato cobalt(III) complexes

 for the chemoselective reduction of nitroarenes to anilines: catalytic and mechanistic investigationDimitra K. Gioftsidou, ${ }^{\text {a }}$ Michael G. Kallitsakis, ${ }^{\text {a }}$ Konstantina Kavaratzi, ${ }^{a}$ Antonios G. Hatzidimitriou, ${ }^{\text {a }}$ Michael A. Terzidis, ${ }^{\text {b }}$ Ioannis N. Lykakis ${ }^{\mathrm{a}, *}$ and Panagiotis A. Angaridis ${ }^{\mathrm{a}, *}$
${ }^{a}$ Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
${ }^{b}$ Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
${ }^{c}$ Department of Nutrition Sciences and Dietetics, International Hellenic University, Sindos, 57400 Thessaloniki, Greece

Table of Contents

S1 EXPERIMENTAL 3
S1.1 General procedures and chemicals 3
S1.2 Syntheses 3
S1.3 Instrumentation 6
S1.4 Single crystal X-ray diffraction analysis 6
S1.5 Catalytic reactions 7
S2 RESULTS AND DISCUSSION 8
S2.1 Single-crystal X-ray diffraction analysis 8
S2.2 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR spectra of Co (III) complexes 13
S2.3 Catalytic reactions 19
S2.3.1 ${ }^{1} \mathrm{H}$ NMR spectra of catalytic reaction product 1 b in the presence of complexes 1-8 20
S2.3.2 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR spectra of catalytic reaction products $1 \mathrm{~b}-14 \mathrm{~b}, 16 \mathrm{~b}$ and 17 c in the presence of complex 2 28
S2.4 Mechanistic studies 45
S2.4.1 High-resolution mass spectrometry 45
S2.4.2 UV-vis absorption spectroscopy 48
S2.4.3 Cyclic voltammetry 49
S2.4.4 Gas chromatography analysis 51
REFERENCES 52

S1 EXPERIMENTAL

S1.1 General procedures and chemicals

All manipulations were carried out under atmospheric conditions. Solvents were purified according to established methods and allowed to stand over molecular sieves for 24 h . 2-mercaptopyrimidine (pymtH), 4,6-dimethyl-2-pyrimidinethiol (dmp2SH), 4,6-diamino-2-pyrimidinethiol (damp2SH), 2mercaptopyridine (2-mpyH), triphenylphosphine $\left(\mathrm{PPh}_{3}\right)$, 1,2-bis(diphenylphosphino)ethane (dppe), pyridine (py), diethylamine $\left(\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}\right)$, sodium methoxide $\left(\mathrm{CH}_{3} \mathrm{ONa}\right)$, ammonium hexafluorophosphate $\left(\mathrm{NH}_{4} \mathrm{PF}_{6}\right)$, tetraethylammonium hexafluorophosphate $\left(\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{4} \mathrm{NPF}_{6}\right)$, [$\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$] and $\left[\mathrm{Co}(\mathrm{acac})_{3}\right]$, as well as methylhydrazine $\left(\mathrm{CH}_{3} \mathrm{NHNH}_{2}\right)$, nitroarenes, nitrosobenzenes, nitroalkane, nitroalkene were obtained from commercial sources and used without any further purification.

S1.2 Syntheses

General synthesis of $\left[\mathrm{Co}\left(\mathrm{L}^{\mathrm{N}}\right)_{3}\right]$ (1-4 and 6). $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.119 \mathrm{~g}, 0.5 \mathrm{mmol})$ was dissolved in 15 mL of $\mathrm{CH}_{3} \mathrm{OH}$. Alongside, to a methanol solution (15 mL) of the corresponding heterocyclic thioamide $\mathrm{L}^{\mathrm{NH}} \mathrm{S}$ (1.5 mmol), $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}(1.5 \mathrm{mmol})$ was added dropwise. The resulting solution of the deprotonated heterocyclic thioamidate ($\mathrm{L}^{\mathrm{N}} \mathrm{S}^{-}$) was stirred at room temperature for 30 min and then it was added slowly to the Co-containing solution. The reaction mixture was stirred at $60-70^{\circ} \mathrm{C}$ for 3 h . After filtration, the dark brown filtrate was set aside to evaporate slowly at room temperature and, over a period of a few days, crystals of 1-4 and 6 were formed.
[Co(pymt) ${ }_{3}$ (1). Dark brown crystals. Yield (based on Co): 58\%. Anal. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{CoN}_{7} \mathrm{~S}_{3}$: Calcd (\%) C, $38.80 ; \mathrm{H}, 2.79$; N, 22.62. Found (\%) C, 38.90; H, 2.95; N, 22.75. FTIR (KBr, cm^{-1}): 3446(w br), 1560(m), 1544(m), 1426(w), 1369(s), 1241(w br), 1201(w), 1168(w), 1095(w), 1061(w), 1010(w), 797(w br), 753(m), 665(w), 4809(w br). UV-vis ($\mathrm{CH}_{3} \mathrm{OH}$), $\lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 315$ (7568), 630 (119). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.41-8.37(\mathrm{~d}, 4 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 187.42,186.49,185.38,169.74,158.55,158.31,157.94$, 157.48, 155.36.
[Co(tfmp2S) ${ }_{3}$] (2). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane. Brown crystals. Yield (based on Co): 70\%. Anal. for $\mathrm{C}_{15} \mathrm{H}_{6} \mathrm{CoF}_{9} \mathrm{~N}_{6} \mathrm{~S}_{3} \cdot 0.16 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: Calcd. (\%) C, 29.84; H, 1.05; $\mathrm{N}, 13.77$. Found (\%) C, 30.07; $\mathrm{H}, 1.26$; N, 13.53. FTIR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3415(m br), 1637(w), 1617(w), 1572(s), 1555(s), 1421(m), 1364(s), 1328(s), 1194(s br), 1150(s br), 1112(s), 1018(w), 1010(w), 834(m), 831(m), 736(m), 688(m), 618(w br), 525(w), 485(w). UV-vis ($\mathrm{CH}_{3} \mathrm{OH}$), $\lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 323$ (15469), $640(163) .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) : $\delta(\mathrm{ppm}) 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, CDCl_{3}): $\delta(\mathrm{ppm}) 187.3,185.6,185.0,161.0,159.9,158.0,157.8,157.5,157.1,119.09$, 119.06, 119.0, 111.0, 110.7, 109.9.
[Co(dmp2S) ${ }_{3}$] (3). Dark green crystals. Yield (based on Co): 65\%. Anal. for $\mathrm{C}_{19} \mathrm{H}_{22.5} \mathrm{CoN}_{6.5} \mathrm{~S}_{3}$: Calcd. (\%) C, 46.41 ; H, 4.67; N, 18.94. Found (\%) C, 46.51; H, 4.59; N, 18.86. FTIR (KBr, cm ${ }^{-1}$): 3480(wbr), 1580(s), 1525(s), 1430(sbr), 1353(w), 1338(m), 1267(s), 1194(w), 1174(m), 1027(w), 1001(w), 925(m), 889(w), 844(m), 578(mbr). UV-vis ($\left.\mathrm{CH}_{3} \mathrm{OH}\right), \lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 322(12324), 614(94) .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 6.42(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 9 \mathrm{H}), 1.78(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ 185.83, 185.79, 185.75, 168.35, 166.77, 115.18, 24.07, 19.97.
[Co(damp2S) ${ }_{3}$] (4). Brown crystals. Yield (based on Co): 68\%. Anal. for $\mathrm{C}_{13.3} \mathrm{H}_{20} \mathrm{CoN}_{12} \mathrm{O}_{1.4} \mathrm{~S}_{3}$: Calcd. (\%) C, 31.14; H, 4.70; N, 29.05. Found (\%) C, 31.26; H, 4.58; N, 29.15. FTIR ($\mathrm{KBr}_{\mathrm{c}}^{\mathrm{cm}}{ }^{-1}$): 3301(m br), 3138(m br), 1624(s), 1573(s), 1533(s), 1470(s), 1319(m), 1276(m), 1253(m br), 1043(w), 995(w), 937(w), 795(w), 589(w). UV-vis ($\mathrm{CH}_{3} \mathrm{OH}$), $\lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$: 309 (10680), 640 (189). NMR data couldn't be obtained due to its very low solubility.
[Co(2-mpy) $)_{3}$ (6). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane. Brown crystals. Yield (based on Co): 85%. Anal. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{CoN}_{3} \mathrm{~S}_{3}$: Calcd. (\%) C, 46.27; H, 3.11; N, 10.79. Found (\%) C, 46.35; H, 3.19; N, 10.86. FTIR (KBr, cm^{-1}): 1576(m), 1552(w), 1439(m), 1422(m), 1254(m), 1138(m), 1087(w), 1025(w), 750(m), 732(m), 658(w), 495(w). UV-vis ($\left.\mathrm{CH}_{3} \mathrm{OH}\right), \lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 322(10624), 650(122) .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 9.57(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.47(\mathrm{t}, 1 \mathrm{H}), 7.42-7.38(\mathrm{t}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H})$, 6.83-6.78 (m, 4 H), 6.69-6.67 (t, 1 H), 6.60-6.57 (t, 1 H$) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta(\mathrm{ppm})$ 178.63, 178.50, 178.44, 150.32, 149.62, 148.40, 137.29, 136.83, 136.63, 136.00, 135.74, 125.80, 124.47, 117.49, 116.72.
[Co(pymt) $\mathbf{3}^{\left.\left(\mathrm{PPh}_{3}\right)\right]}$ (5). $0.119 \mathrm{~g}(0.5 \mathrm{mmol})$ of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was dissolved in 20 mL of $\mathrm{CH}_{3} \mathrm{OH}$. An amount of $0.113 \mathrm{~g}(1 \mathrm{mmol})$ of pymtH was dissolved in 10 mL of $\mathrm{CH}_{3} \mathrm{OH}$ and then 4.2 mL of KOH 0.24 $\mathrm{M}(1 \mathrm{mmol})$ was added. The dark yellow solution was stirred for 20 min and then $0.265 \mathrm{~g}(1.0 \mathrm{mmol})$ of PPh_{3} added. The resulting solution was added to the Co-containing solution. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h and then it was filtered. The brown filtrate was allowed to evaporate slowly leading to the precipitation of dark brown crystals of compound 5 within 7 days. Yield (based on Co): 82%. Anal. for $\mathrm{C}_{3} \mathrm{H}_{24} \mathrm{CoN}_{6} \mathrm{PS}_{3}$: Calcd. (\%) C, 55.04 ; H, 3.70; N, 12.84. Found (\%) C, 55.14; H, 3.82; N, 12.72. FTIR (KBr, cm ${ }^{-1}$): 1558(w), 1542(w), 1430(v w), 1378(m), 1253(v w), 1094(v w), 755(w), 699(w), 500(v w). UV-vis ($\left.\mathrm{CH}_{3} \mathrm{OH}\right), \lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 306$ (2927), 640 (100). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.81-8.77(\mathrm{~d}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 7.77$ (t br, 6 H), 7.67 (t br, 2 H), 7.54-7.53 (t, 1 H), 7.47 (t, 3 H), 7.37 (m, 3 H), 7.28 (m br, 5 H), 7.16 (s br, 1 H), 6.84 (s br, 1 H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 179.93,179.81,171.80,158.38,155.32,153.13,134.01,133.54,133.47$, 131.94, 131.59, 128.45, 128.25, 128.21, 128.17, 128.13, 116.32.
[Co(2-mpy)2(dppe)]PF6 (7). 0.119 g of $\mathrm{CoCl}_{2} 6 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ was added in 30 mL of $\mathrm{CH}_{3} \mathrm{OH} .0 .111 \mathrm{~g}$ (1 mmol) 2-mpyH and 0.199 g dppe $(0.5 \mathrm{mmol}$) were added in 15 mL CH 3 OH . After stirring 0.07 mL of $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}(0.7 \mathrm{mmol})$ was added. Then the dark yellow solution was added to the Co-containing solution and the total solution was stirred for 1 h at $60^{\circ} \mathrm{C}$. After cooling, the solution was filtered and 0.138 g of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ (0.5 mmol) was added to the brown filtrate. The total solution was stirred for 30 min and then the brown-green filtrate was allowed to evaporate slowly. After 7 days, brown-greenish crystals were obtained. Yield (based on Co): 80\%. Anal. for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{CoF}_{6} \mathrm{~N}_{2} \mathrm{O}_{0.25} \mathrm{P}_{3} \mathrm{~S}_{2}$: Calcd. (\%) C, 52.95; H, 4.79; N, 3.17. Found (\%) C, 52.80; H, 4.84; N, 3.25. FTIR (KBr, cm^{-1}): 3439(m br), 1631(w), 1581(m), 1551(w), 1485(w), 1435(m br), 1425(m), 1260(m), 1190(w), 1137(m), 1094(m), 1024(w), 999(w), 840(s), 747(m br), 732(m br), 688(m br), 591(w), 557(m), 533(m), 492(w). UV-vis (CH ${ }_{3} \mathrm{OH}$), $\lambda_{\max } / \mathrm{nm}$ $\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 315$ (15741), $610(185) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta(\mathrm{ppm}) 8.39-8.38(\mathrm{~d}, 2 \mathrm{H}), 7.69-$ 7.63 (m, 6 H), 7.60-7.58 (t, 4 H), 7.45-7.43 (t, 2 H), 7.39-7.38 (t, 2 H), 7.18-7.16 (m, 8 H), 7.00-6.99 (t , $2 \mathrm{H})$, 6.42-6.40 (d, 2 H$), 1.32-1.29(\mathrm{t}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta(\mathrm{ppm}) 175.21,147.50$, 137.88, 131.78, 129.23, 128.09, 125.57, 119.62, 23.03.
[Co(2-mpy) $\mathbf{2}_{2}(\mathrm{py})_{2}$] PF_{6} (8). 0.238 g of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ was added in $40 \mathrm{~mL} \mathrm{CH} 3 \mathrm{OH} .0 .222 \mathrm{~g}(2$ mmol) of 2-mpyH and $0.32 \mathrm{~mL}(1 \mathrm{mmol})$ of py dissolved in 10 mL of $\mathrm{CH}_{3} \mathrm{OH}$ and then was added 0.068 g of $\mathrm{CH}_{3} \mathrm{ONa}(1.25 \mathrm{mmol})$. After 15 min the deprotonation solution was added to the Cocontaining solution and the total dark brown solution was stirred for 15 min . Filtration was followed and $0.275 \mathrm{~g}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{4} \mathrm{NPF}_{6}(1 \mathrm{mmol})$ dissolved in $5 \mathrm{mLCH}_{3} \mathrm{OH}$. The total solution was stirred and the brown filtrate was allowed to crystallize by slow evaporation at room temperature. After a week
brown crystal were received. Yield (based on Co): 77\%. Anal. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{CoF}_{6} \mathrm{~N}_{4} \mathrm{PS}_{2}$: Calcd. (\%) $\mathrm{C}, 44.09$; H, 4.18; N, 8.94. Found (\%) C, 44.18; H, 4.23; N, 8.89. FTIR (KBr, cm ${ }^{-1}$): 1606(w br), 1579(m br), 1554(w), 1488(w), 1443(m), 1422(m), 1358(w), 1266(m), 1220(w), 1154(w), 1140(m), 1092(w), 1070(m), 877(w), 840(s), 758(m), 734(w), 697(m), 557(m), 468(w). UV-vis (CH3OH), $\lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{M}^{-1}\right.$ cm^{-1}): 323 (16241), $650(214) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.27(\mathrm{~s} \mathrm{br}, 4 \mathrm{H}), 7.50-7.47(\mathrm{t}, 2 \mathrm{H})$, 7.40 (t br, 2 H), 7.07 (s br, 2 H), 6.83-6.78 (q, 6 H), 6.68 (t, 1 H$), 6.58(\mathrm{t}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta(\mathrm{ppm}) 178.75,178.26,150.21,149.61,147.56,137.30,136.63,136.00,125.51,125.39$, 125.14, 117.61, 116.99.

S1.3 Instrumentation

Elemental analyses were obtained on a PerkinElmer 240B elemental microanalyzer. Infra-red spectra were recorded on a Nicolet FT-IR 6700 spectrophotometer as KBr discs in the region of 4000-400 cm^{-1}. UV-vis electronic absorption spectra were obtained on a Shimadzu 160A spectrophotometer as $1.0 \times 10^{-3} \mathrm{M}$ and $1.0 \times 10^{-4} \mathrm{M}$ solutions in $\mathrm{CH}_{3} \mathrm{OH}$. Cyclic voltammetry measurements were conducted on an Autolab electrochemical analyzer, using a carbon working electrode, a platinum counter electrode, and an $\mathrm{Ag} / \mathrm{AgCl}$ electrode saturated with a KCl reference electrode in 8 mL of $\mathrm{CH}_{3} \mathrm{OH}$ or $\mathrm{CH}_{3} \mathrm{CN}$ solutions with $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$ as supporting electrolyte, and a scan rate of $0.1 \mathrm{~V} \mathrm{~s}^{-1}$. Argon was used to purge all samples. In the acetic acid concentration dependence study, a stock solution of $\mathrm{CH}_{3} \mathrm{COOH}(8.56 \mathrm{M})$ was prepared in $\mathrm{CH}_{3} \mathrm{CN}$. To a stirred and degassed 1.0 mM catalyst solution, 4-20 mM of acid stock solution was added and purged with argon for 120 s before performing cyclic voltammetry. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra were recorded in $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{CD}_{3} \mathrm{OD}$ and $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ solutions on an Agilent 500 MHz spectrometer. Chemical shifts were reported as δ values using the solvent as internal standard.

S1.4 Single crystal X-ray diffraction analysis

Single crystals of all compounds, suitable for X-ray diffraction analysis, were mounted on thin glass fibers with the aid of an epoxy resin. X-ray diffraction data were collected on a Bruker Apex II CCD area-detector diffractometer, equipped with a Мо Ка ($\lambda=0.71070 \AA$ A) sealed tube source, at 295 K, using the ϕ and ω scans technique. The program Apex2 (Bruker AXS, 2006) was used in data collection, cell refinement, and data reduction. ${ }^{1}$ Structures were solved and refined with full-matrix least-squares using the program Crystals. ${ }^{2}$ Anisotropic displacement parameters were applied to all non-hydrogen atoms, while hydrogen atoms were generated geometrically and refined using a riding model. Details of crystal data and structure refinement parameters are shown in Table S1. Plots of the molecular structures of all compounds were obtained by using Mercury software. ${ }^{3}$

S1.5 Catalytic reactions

Evaluation of catalytic activity of complexes 1-8. To a sealed tube containing 4-nitrotoluene (0.2 mmol) and $1 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{OH}$ were added 5 equiv of $\mathrm{CH}_{3} \mathrm{NHNH}_{2}(1 \mathrm{mmol})$ and the respective catalyst 1-8 ($1-2 \mathrm{~mol} \%$). The reaction was heated at $70^{\circ} \mathrm{C}$ for 4 h . The reaction was monitored by TLC, and after completion the solvent was evaporated under vacuum, small amount of ethyl acetate was added, and the slurry was filtered under pressure through a short pad of silica gel to withhold the catalyst. The filtrate was evaporated under vacuum to afford the corresponding amine in almost pure form.

Application of catalytic reaction to substrates 1a-17a. Analogous reactions, under similar experimental conditions, were conducted for substrates 1a-17a using complex 2 as catalyst. Spectroscopic data $\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\right)$ of the products of the reactions are in agreement with those reported in the literature. ${ }^{4,5,6}$

S2 RESULTS AND DISCUSSION

S2.1 Single-crystal X-ray diffraction analysis

Table S1. Crystal data, data collection and refinement parameters for complexes 1, 3, 4, 5, 7 and 8.

	1-2 $\mathrm{CH}_{3} \mathrm{CN}$	3.0.5CH3CN	$4 \cdot 1.25 \mathrm{CH}_{3} \mathrm{OH}$
CCDC Deposition Number	1995929	1995931	1995932
Chemical formula	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{CoN}_{6} \mathrm{~S}_{3}$	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{CoN}_{6} \mathrm{~S}_{3}$	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{CoN}_{12} \mathrm{~S}_{3}$
Formula weight	433.43	497.06	522.52
Crystal system	Orthorhombic	Orthorhombic	Monoclinic
Space group	Pbcb	Pna21	$P 2_{1} / \mathrm{c}$
Temperature (K)	295	295	295
Unit cell parameters			
a (Å)	10.3110 (17)	15.4562 (8)	10.7282 (13)
b (A)	12.3024 (19)	19.4479 (14)	29.457 (3)
$c(A)$	28.363 (6)	8.1889 (4)	8.1158 (8)
Volume (${ }^{\text {a }}$)	3597.8 (11)	2461.5 (2)	2503.1 (5)
Z	8	4	4
Radiation type, λ (A)	Mo K α	Mo K α	Mo K α
Absorption coefficient (mm^{-1})	1.31	0.97	0.97
Crystal size (mm)	$0.14 \times 0.12 \times 0.07$	$0.19 \times 0.17 \times 0.13$	$0.20 \times 0.19 \times 0.14$
Diffractometer	Bruker Kappa Apex2	Bruker Kappa Apex2	Bruker Kappa Apex2
Absorption correction	Numerical	Numerical	Numerical
	Analytical Absorption Tompa, 1965)	Analytical Absorption Tompa, 1965)	Analytical Absorption Tompa, 1965)
$T_{\text {min }}, T_{\text {max }}$	0.85, 0.91	0.85, 0.88	
Number of measured, independent and observed [$1>2.0 \sigma(\mathrm{I})$] reflections	26550, 3452, 2906	15406, 4989, 3258	41557, 4814, 3903
Rint	0.028	0.022	0.040
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.612	0.626	0.617
$\mathrm{R}\left[\mathrm{F}^{2}>2 \sigma\left(\mathrm{~F}^{2}\right)\right], \mathrm{wR}\left(\mathrm{F}^{2}\right), \mathrm{S}$	0.047, 0.070, 1.00	0.023, 0.049, 1.00	0.045, 0.070, 1.00
No. of reflections	2906	3258	3903
No. of parameters	228	266	277
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.65, -0.34	0.24, -0.22	0.39, -0.38

(continued)
(continued)

	5	$7 \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$	8
CCDC Deposition Number	1995933	1995934	1995935
Chemical formula	$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{CoN}_{6} \mathrm{PS}_{3}$	$\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{CoF}_{6} \mathrm{~N}_{2} \mathrm{O}_{0.25} \mathrm{P}_{3} \mathrm{~S}_{2}$	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{CoF}_{6} \mathrm{~N}_{4} \mathrm{PS}_{2}$
Formula weight	654.67	826.64	582.42
Crystal system	Triclinic	Orthorhombic	Monoclinic
Space group	P-1	$P 2_{12} 1_{1}{ }_{1}$	$P 2_{1} / \mathrm{c}$
Temperature (K)	295	295	295
Unit cell parameters			
a (A)	10.1905 (15)	12.6502 (5)	8.7104 (12)
b (A)	11.2851 (16)	13.2027 (5)	20.042 (3)
c (Å)	14.0183 (19)	22.5410 (8)	13.7941 (17)
Volume (${ }^{3}$)	1452.2 (6)	3764.7 (2)	2408.0 (6)
Z	2	4	4
Radiation type, λ (Å)	Mo K α	Mo K α	Mo K α
Absorption coefficient (mm^{-1})	0.89	0.75	1.01
Crystal size (mm)	$0.23 \times 0.16 \times 0.07$	$0.20 \times 0.17 \times 0.11$	$0.26 \times 0.19 \times 0.17$
Diffractometer	Bruker Kappa Apex2	Bruker Kappa Apex2	Bruker Kappa Apex2
	Numerical	Numerical	Numerical
Absorption correction	Analytical Absorption Tompa, 1965)	Analytical Absorption (De Meulenaer \& Tompa, 1965)	Analytical Absorption Tompa, 1965)
$T_{\text {min }}, T_{\text {max }}$	0.87, 0.94	0.88, 0.92	0.82, 0.84
Number of measured, independent and observed [I> 2.0б(I)] reflections	37275, 5409, 3985	24737, 7688, 5868	43635, 5311, 4513
Rint	0.052	0.016	0.028
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.617	0.626	0.643
$\mathrm{R}\left[\mathrm{F}^{2}>2 \sigma\left(\mathrm{~F}^{2}\right)\right], \mathrm{wR}\left(\mathrm{F}^{2}\right), \mathrm{S}$	0.040, 0.072, 1.00	0.031, 0.052, 1.00	0.066, 0.131, 1.00
No. of reflections	3985	5868	4513
No. of parameters	370	456	301
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.40, -0.36	0.33, -0.72	1.12, -0.67

Table S2. Bond distances (\AA) and angles (deg) of 1-4.

	1	$2^{\text {a }}$	3	4
bond distances (\AA)				
	1.900 (2)	1.911 (5)	1.962 (2)	1.946 (2)
$\mathrm{Co}-\mathrm{N}$	1.918 (2)	1.924 (6)	1.968 (2)	1.959 (2)
	1.945 (3)	1.927 (6)	1.986 (2)	1.971 (2)
	2.283 (9)	2.250 (2)	2.249 (9)	2.269 (1)
Co-S	2.293 (9)	2.275 (2)	2.256 (9)	2.291 (9)
	2.319 (9)	2.306 (2)	2.265 (9)	2.301 (9)
bond angles (deg)				
$\mathrm{N}-\mathrm{Co}-\mathrm{S}_{\text {cis }}$	72.98 (7), 93.72 (8)	72.42 (16), 94.39 (18)	72.60 (7), 91.64 (7)	72.32 (7), 96.56 (7)
	72.91 (7), 95.30 (7)	72.42 (18), 95.92 (18)	73.23 (8), 90.09 (7)	71.70 (7), 90.95 (7)
	72.16 (8), 99.59 (8)	72.79 (18), 96.2 (2)	72.18 (7), 91.51 (7)	71.86 (7), 97.06 (8)
$\mathrm{N}-\mathrm{Co}-\mathrm{Strans}^{\text {a }}$	94.64 (7)	96.61 (17)	166.36 (8)	101.45 (7)
	100.20 (8)	99.05 (18)	167.53 (8)	101.34 (8)
	166.68 (8)	166.86 (18)	167.20 (8)	163.72 (7)
$\mathrm{N}-\mathrm{Co}-\mathrm{N}_{\text {cis }}$	93.05 (10)	93.7 (3)	100.94 (10)	94.27 (11)
	95.76 (11)	99.4 (2)	101.56 (11)	99.03 (10)
$\mathrm{N}-\mathrm{Co}-\mathrm{Ntrans}$	169.31 (10)	162.5 (2)	102.12 (10)	164.21 (10)
$\mathrm{S}-\mathrm{Co}-\mathrm{S}_{\text {cis }}$	92.44 (3)	94.55 (8)	94.49 (3)	93.13 (4)
	101.61 (4)	97.49 (8)	95.82 (3)	94.55 (3)
$\mathrm{S}-\mathrm{Co}-\mathrm{S}_{\text {trans }}$	162.72 (4)	166.03 (9)	96.37 (3)	170.62 (3)

${ }^{\text {a }}$ Data are given for only one of the three symmetry independent molecules of the asymmetric unit of the crystallographic unit cell.

Table S3. Bond distances (A) and angles (deg) of 5.

bond distances (Å)					
Co1-P1	$2.270(2)$	Co1-N3	$1.957(3)$	Co1-S2	$2.335(1)$
Co1-N1	$1.950(3)$	Co1-S1	$2.307(1)$	Co1-S3	$2.287(1)$
bond angles (deg)					
P1-Co1-S1	$100.23(5)$	S2-Co1-S3	$166.60(4)$	S3-Co1-N1	$93.68(11)$
P1-Co1-S2	$91.60(5)$	P1-Co1-N1	$172.42(9)$	S1-Co1-N3	$161.97(9)$
P1-Co1-S3	$86.32(5)$	P1-Co1-N3	$94.40(10)$	S2-Co1-N3	$71.40(10)$
S1-Co1-S2	$97.54(6)$	S1-Co1-N1	$72.22(10)$	S3-Co1-N3	$95.54(10)$
S1-Co1-S3	$95.85(6)$	S2-Co1-N1	$90.11(10)$	N1-Co1-N3	$93.15(12)$

Table S4. Bond distances (A) and angles (deg) of $\mathbf{7}$ and $\mathbf{8}$.
7
8

bond distances (Å)							
Co1-S1	$2.284(1)$	Co1-N2	$1.967(2)$	Co1-S1	$2.291(1)$	Co1-N2	$1.932(3)$
Co1-S2	$2.292(1)$	Co1-P1	$2.227(1)$	Co1-S2	$2.317(1)$	Co1-N3	$1.951(4)$
Co1-N1	$1.962(2)$	Co1-P2	$2.222(1)$	Co1-N1	$1.923(3)$	Co1-N4	$1.961(3)$
			bond angles (deg)				
P1-Co1-P2	$87.38(3)$	S1-Co1-S2	$165.70(4)$	S1-Co1-N1	$72.23(10)$	S1-Co1-S2	$162.71(5)$
P1-Co1-S1	$101.16(3)$	S1-Co1-N1	$72.41(8)$	S2-Co1-N1	$95.31(10)$	N1-Co1-N2	$87.99(14)$
P2-Co1-S1	$90.39(3)$	S2-Co1-N1	$96.72(8)$	S1-Co1-N2	$95.16(10)$	N1-Co1-N3	$170.74(15)$
P1-Co1-S2	$89.44(3)$	S1-Co1-N2	$97.22(7)$	S2-Co1-N2	$71.96(10)$	N1-Co1-N4	$92.19(13)$
P2-Co1-S2	$99.75(3)$	S2-Co1-N2	$72.60(7)$	S1-Co1-N3	$98.81(11)$	N2-Co1-N3	$90.54(14)$
P1-Co1-N1	$173.47(8)$	P1-Co1-N2	$92.02(7)$	S2-Co1-N3	$92.92(11)$	N2-Co1-N4	$171.31(14)$
P2-Co1-N1	$93.68(7)$	P2-Co1-N2	$172.34(7)$	S1-Co1-N4	$93.16(10)$	N3-Co1-N4	$90.64(14)$
N1-Co1-N2	$87.79(9)$			S2-Co1-N4	$99.39(10)$		

S2.2 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR spectra of Co (III) complexes

Figure $\mathrm{S} 1 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of 1 .

Figure S2. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of 3.

Figure $\mathrm{S} 3 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of 5 .

Figure S4. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of 6 .

Figure $\mathrm{S} 5 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ spectra of 7 .

Figure S6. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of 8 .

S2.3 Catalytic reactions

Table S5. Reduction of $\mathbf{1}$ a to $\mathbf{1 b}$ catalyzed by $\mathbf{1 - 8}$, in the presence of $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$, in $\mathbf{1 ~ m L C H}$ $70^{\circ} \mathrm{C}$ and for 4 h .

[a] 1a (0.2 mmol), $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$ (5 equiv, 1 mmol), catalysts ($1 \mathrm{~mol} \%$), in $\mathrm{CH}_{3} \mathrm{OH}$, at $70^{\circ} \mathrm{C}$ and for 4 h . [b] Conversion percentages (\%) of substrate 1a were measured by ${ }^{1} \mathrm{H}$ NMR spectroscopy after addition of a specific amount of 1,3-dimethoxybenzene as internal standard. [c] Product yields were measured by ${ }^{1} \mathrm{H}$ NMR spectroscopy based on the integration of the appropriate proton peaks.

S2.3.1 ${ }^{1} \mathrm{H}$ NMR spectra of catalytic reaction product $\mathbf{1 b}$ in the presence of complexes 1-8

Figure $\mathrm{S} 7 .{ }^{1} \mathrm{H}$ NMR spectrum of crude reaction mixture of the reduction of 1 a in the presence 1 and $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of crude reaction mixture of the reduction of $\mathbf{1 a}$ in the presence of $\mathbf{2}$ and $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of crude reaction mixture of the reduction of $\mathbf{1 a}$ in the presence of $\mathbf{3}$ and $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$.

Figure $\mathrm{S} 10 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of crude reaction mixture of the reduction of 1 a in the presence of 4 and $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$.

Figure $\mathrm{S} 11 .{ }^{1} \mathrm{H}$ NMR spectrum of crude reaction mixture of the reduction of $\mathbf{1}$ a in the presence of 5 and $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$.

Figure $\mathrm{S} 12 .{ }^{1} \mathrm{H}$ NMR spectrum of crude reaction mixture of the reduction of $\mathbf{1 a}$ in the presence of 6 and $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$.

$\stackrel{\text { ■ }}{\dot{+}}$

$\mathrm{CH}_{3} \mathrm{OH}$

Figure $\mathrm{S} 13 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of crude reaction mixture of the reduction of 1 a in the presence of 7 and $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$.

Figure $\mathrm{S} 14 .{ }^{1} \mathrm{H}$ NMR spectrum of crude reaction mixture of the reduction of $\mathbf{1 a}$ in the presence of 8 and $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$.

S2.3.2 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR spectra of catalytic reaction products $\mathbf{1 b} \mathbf{- 1 4 b}, \mathbf{1 6 b}$ and $\mathbf{1 7 c}$ in the presence of complex 2
p-Toluidine (1b): ${ }^{4}$ brown solid, (19 mg , yield: 86%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 6.97$ (d, J=7.6 $\mathrm{Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ 143.8, 129.8, 127.8, 115.3, 20.5.

Figure S15. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{1 b}$.
m-Toluidine (2b): ${ }^{4}$ light yellow liquid, (18 mg , yield: 82%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.10(\mathrm{t}, \mathrm{J}$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.54(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 146.2,139.0,129.1,119.4,115.9,112.2,21.4$.

2b

Figure S16. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{2 b}$.

2,3-dimethylaniline (3b): ${ }^{4}$ light brown solid, (20 mg , yield 83%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ $6.94(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 144.5,137.2,126.0,120.9,120.7,113.2,20.5,12.7$.

Figure S17. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{3 b}$.
benzene-1,4-diamine (4b): ${ }^{7}$ brown solid, (17 mg , yield 78%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 6.56$ (s, 4 H). ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 138.5,116.8$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{4 b}$.
m-Anisidine (5b): ${ }^{5}$ light yellow liquid, (20 mg , yield: 81%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.06(\mathrm{t}, \mathrm{J}$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.30(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 160.7,147.7,130.1,107.9,103.9,101.1,55.1$.

Figure S19. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{5 b}$.
p-Chloroaniline (6b): ${ }^{5}$ light yellow solid, (21 mg , yield: 81%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.09$ (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $6.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ 144.9, 129.1, 123.2, 116.2.

Figure $\mathrm{S} 20 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{6 b}$.
p-Bromoaniline (7b):[5] brown liquid, (27 mg , yield: 79%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.23$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 145.4,132.0,116.7,110.2$.

7b

Figure S21. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{7 b}$.

Methyl 4-aminobenzoate (8b): ${ }^{5}$ light yellow solid, (23 mg , yield: 77%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) $7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{brs}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 167.2,150.9,131.6,119.6,113.8,51.6$.

Figure S22. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{8 b}$.

1-(4-aminophenyl)ethan-1-one (9b): ${ }^{5}$ yellow solid, (21 mg , yield: 75%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ (ppm) $7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 196.5, 150.8, 130.8, 113.9, 26.1.

Figure S23. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{9 b}$.
m-aminobenzonitrile (10b): ${ }^{5}$ brown solid, (18 mg , yield: 75%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ $7.21(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 146.9,130.0,121.9,119.2$ (2C), 117.4, 112.9.

Figure S24. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{1 0 b}$.

3-aminobenzenesulfonamide (11b): ${ }^{5}$ yellow solid, (27 mg , yield: 78%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): δ (ppm) $7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$, (s, 1 H$), 7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (125 MHz, CD 3 OD): 149.8, 145.2, 130.6, 119.3, 115.5, 112.7.

11b

Figure S25. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectra of $\mathbf{1 1 b}$.

6-aminoisobenzofuran-1(3H)-one (12b): ${ }^{5}$ yellow solid, (25 mg , yield: 83%). ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$): $\delta(\mathrm{ppm}) 7.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta(\mathrm{ppm}) 172.8,149.3,135.9,125.9,122.4,121.8,108.3,69.9$.

Figure S26. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectra of $\mathbf{1 2 b}$.

1H-benzo[d]imidazol-5-amine (13b). ${ }^{5}$ brown solid, (22 mg , yield: 81%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): δ (ppm) $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}(125$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): δ (ppm) 144.9, 140.9, 139.7, 117.2, 114.8, 100.4.

13b

Figure S27. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectra of $\mathbf{1 3 b}$.

1H-indazol-5-amine (14b): ${ }^{5}$ yellow liquid, (21 mg , yield: 79%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$): δ (ppm) $7.79(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}(125$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta(\mathrm{ppm}) 148.7,143.5,134.6,122.2,117.9,114.6,93.3$.

Figure S28. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectra of $\mathbf{1 4 b}$.
methyl (E)-3-(4-aminophenyl)acrylate (16b): ${ }^{8}$ yellow solid, (24 mg , yield: 68%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta(\mathrm{ppm}) 7.60(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 168.2,148.7,145.2,129.9,124.7$, 114.9, 113.3, 51.5.

Figure S29. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{1 6 b}$.

N -(1H-imidazol-2-yl)hydroxylamine (17c): ${ }^{6}$ white solid, (16 mg , yield: 85%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\mathrm{CD}_{3} \mathrm{OD}$): $\delta(\mathrm{ppm}) 7.10(\mathrm{~s}, 2 \mathrm{H}), 4.95$ (br s, 1 H$) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta(\mathrm{ppm}) 136.5,131.0$ (2C).

Figure S30. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) and ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectra of $\mathbf{1 7 c}$.

Figure S31. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$) of crude reaction mixture of the reduction of $\mathbf{1 a}$ in the presence 2 and 1 equiv $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$.

S2.4 Mechanistic studies

S2.4.1 High-resolution mass spectrometry

Figure S32. Upper part: High-resolution mass spectra of: (a) $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{OH}$, (b) $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{OH}$ after addition of 1-2 equiv of $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$, (c) $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{OH}$ after addition of more than 3 equiv of $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$. Lower part: Calculated mass spectra that correspond to the observed mass peaks m / z and their assignments to the species (a) $\left[\mathrm{Co}(\mathrm{pymt})_{3}+\mathrm{H}\right]^{+}$, (b) $\left[\mathrm{Co}(\mathrm{pymt})_{2}(\mathrm{pymtH})\left(\mathrm{CH}_{3} \mathrm{NHNH}_{2}\right)\right]^{+}$and (c) $\left[\mathrm{Co}(\text { pymt })_{2}\left(\mathrm{CH}_{2}=\mathrm{NNH}_{2}\right)_{2}\right]^{+}$.

Figure S33. Upper part: High-resolution mass spectra of: (a) $\mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{OH}$, (b) $\mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{OH}$ after addition of 1-2 equiv of $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$, (c) $\mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{OH}$ after addition of more than 3 equiv of $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$. Lower part: Calculated mass spectra that correspond to the observed mass peaks m / z and their assignments to the species (a) $\left[\mathrm{Co}(\mathrm{tfmp} 2 \mathrm{~S})_{3}+\mathrm{K}\right]^{+}$, (b) $\left[\mathrm{Co}(\mathrm{tfmp} 2 \mathrm{~S})_{2}(\mathrm{tfmp} 2 \mathrm{SH})\left(\mathrm{CH}_{3} \mathrm{NHNH}_{2}\right)\right]^{+}$and (c) $\left[\mathrm{Co}(\mathrm{tfmp} 2 \mathrm{~S})_{2}\left(\mathrm{CH}_{2}=\mathrm{NNH}_{2}\right)_{2}\right]^{+}$.

Figure S34. Upper part: High-resolution mass spectra of: (a) 5 in $\mathrm{CH}_{3} \mathrm{OH}$, (b) $\mathbf{5}$ in $\mathrm{CH}_{3} \mathrm{OH}$ after addition of 1-2 equiv of $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$, (c) 5 in $\mathrm{CH}_{3} \mathrm{OH}$ after addition of more than 3 equiv of $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$. Lower part: Calculated mass spectra that correspond to the observed mass peaks m / z and their assignments to the species (a) $\left[\mathrm{Co}(\mathrm{pymt})_{3}\left(\mathrm{PPh}_{3}\right)\right]^{+}$, (b) $\left[\mathrm{Co}(\text { pymt })_{2}(\text { pymtH })\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{NHNH}_{2}\right)+\mathrm{K}\right]^{+}$and (c) $\left[\mathrm{Co}(\text { pymt })_{2}(\text { pymtH })\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2}=\mathrm{NNH}_{2}\right)_{2}\right]^{+}$.

Figure S35. UV-vis absorption spectra of 6-8 in $\mathrm{CH}_{3} \mathrm{OH}\left(2 \times 10^{-4} \mathrm{M}\right)$. Inset: UV-vis absorption spectra of the lower energy region of $6-8$ in $\mathrm{CH}_{3} \mathrm{OH}\left(3 \times 10^{-3} \mathrm{M}\right)$.

Figure S36. UV-vis absorption spectra of $\mathbf{3}$ in $\mathrm{CH}_{3} \mathrm{OH}\left(3 \times 10^{-3} \mathrm{M}\right)$ upon addition of increasing amounts (0.25-1 equiv) of $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$.

S2.4.3 Cyclic voltammetry

Figure S37. Cyclic voltammetry data for the pyridine-based thioamidato Co (III) complexes 6-8 in $\mathrm{CH}_{3} \mathrm{CN}$ (all spectra were shifted vertically for the sake of clarity).

Figure S38. Cyclic voltammetry data of $\mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{CN}$ upon addition of increasing amounts of $\mathrm{CH}_{3} \mathrm{COOH}$.

Figure S39. Left side: Overlay of cyclic voltammograms of $\mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{CN}$ at different scan rates from 60 to 200 mV . Top and right side: Peak current $\left(I_{\mathrm{p}}\right)$ vs square roots of the scan rates $\left(\mathrm{v}^{1 / 2}\right)$ plots for the Co (III)/Co(II), $\mathrm{Co}(\mathrm{II}) / \mathrm{Co}$ (I) and Co (II)/Co(III) redox processes.

CV measurements of $\mathbf{2}$ at different scan rates show that the peak currents $\left(I_{p}\right)$ associated with both reduction processes vary linearly with the square root of the scan rates and follow the RandlesSevcik diffusion equation, $I_{p}=0.4463(F / R T)^{1 / 2} n_{p}{ }^{3 / 2} F A D^{1 / 2}\left[C_{o}\right] v^{1 / 2}$, where I_{p} is the peak current, F is Faraday's constant ($F=96.485 \mathrm{C} \mathrm{mol}^{-1}$), R is the universal gas constant ($R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$), T is temperature $(T=300 K), n_{p}$ is the number of electrons transferred, A is the active surface area of the electrode, D is the diffusion coefficient of the complex, $\left[\mathrm{C}_{0}\right]$ is the concentration of the catalyst, and v is the scan rate $(\mathrm{V} / \mathrm{s})$. The electrochemical diffusion coefficients of $\mathbf{2}$ were determined to be 8.5×10^{-6}, $22.5 \times 10^{-6} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ for the first and the second reduction processes, respectively (the diffusion coefficients are mentioned in anodic scan). The observation of similar slopes in the $I_{p} v s v^{1 / 2}$ plots for both of these processes provides an indication of the homogeneous behavior of the complex during its reduction from $\mathrm{Co}(\mathrm{III})$ to $\mathrm{Co}(\mathrm{I})$, and not the formation of nanoparticles.

S2.4.4 Gas chromatography analysis

Figure S40. GC-TCD chromatogram of the reaction mixture in the presence of $\mathbf{2}$ and $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$ in $\mathrm{CH}_{3} \mathrm{OH}\left(\mathrm{CH}_{4}: 2.9 \%, \mathrm{~N}_{2}: 8.6 \%\right)$.

REFERENCES

1 Bruker Analytical X-ray Systems, Inc., 2006. Apex2, Version 2 User Manual, M86-E01078, Madison, WI.

2 P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, Software for guided crystal structure analysis, J. Appl. Cryst., 2003, 36, 1487.
3 C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, Mercury: visualization and analysis of crystal structures, J. Appl. Cryst., 2006, 39, 453-457.
4 E. Vasilikogiannaki, C. Gryparis, V. Kotzabasaki, I. N. Lykakis, M. Stratakis, Adv. Synth. Catal., 2013, 355, 907-911.
5 D. I. Ioannou, D. K. Gioftsidou, V. E. Tsina, M. G. Kallitsakis, A. G. Hatzidimitriou, M. A. Terzidis, P. A. Angaridis, I. N. Lykakis, J. Org. Chem., 2021, 86, 2895-2906.

6 M. G. Kallitsakis, D. I. Ioannou, M. A. Terzidis, G. E. Kostakis, I. N. Lykakis, Org. Lett., 2020, 22, 4339-4343.

7 Y. Y. See, M. S. Sanford, Org. Lett., 2020, 22, 2931-2934.
8 F. Hochberger-Roa, S. Cortés-Mendoza, D. Gallardo-Rosas, R. A. Toscano, M. C. Ortega-Alfaro, J. G. López-Cortés, Adv. Synth. Catal., 2019, 361, 4055-4064.

