Supplementary Information

X/Y Platinum(II) complexes: some features of supramolecular assembly *via* halogen bonding

Anastasia Yu. Gitlina,^a Stanislav Petrovskii,^b Maksim Luginin,^b Alexey Melnikov,^c Elena Rychagova,^d Sergey Ketkov,^{d*} and Elena Grachova^{b*}

^a Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

^b Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia

^c Centre for Nano- and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia

^d G.A. Razuvaev Institute of Organometallic Chemistry, the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia

Correspondence: <u>e.grachova@spbu.ru</u>, <u>sketkov@iomc.ras.ru</u>

Scheme S1.	Numeration of $Pt(II)$ complexes $1Y-4Y$ (Y = Cl, Br, I)
X-Ray structur	re determination6
Table S1.	Crystallographic data for compounds 1Cl, 1Br, 2Br, 3I and 4Cl7
Table S2.	Crystallographic data for compounds 1I, 2Cl, 3Cl and 4Br
Figure S1.	¹ H NMR spectra of complexes 1 Y, d ₁ -chloroform, r.t10
Figure S2.	¹ H ¹ H COSY NMR spectrum of complex 1Cl , d ₁ -chloroform, r.t10
Figure S3.	¹ H ¹ H COSY NMR spectrum of complex 1Br , d ₁ -chloroform, r.t11
Figure S4.	¹ H ¹ H COSY NMR spectrum of complex 1I , d ₁ -chloroform, r.t11
Figure S5.	¹ H NMR spectra of complexes 2 Y, d ₁ -chloroform, r.t
Figure S6.	¹ H ¹ H COSY NMR spectrum of complex 2Cl , d ₁ -chloroform, r.t
Figure S7.	¹ H ¹ H COSY NMR spectrum of complex 2Br , d ₁ -chloroform, r.t13
Figure S8.	1 H 1 H COSY NMR spectrum of complex 2I , d ₁ -chloroform, r.t13
Figure S9.	¹ H NMR spectra of complexes 3 Y, d ₁ -chloroform, r.t
Figure S10.	¹ H ¹ H COSY NMR spectrum of complex 3Cl , d ₁ -chloroform, r.t14
Figure S11.	¹ H ¹ H COSY NMR spectrum of complex 3Br , d ₁ -chloroform, r.t15
Figure S12.	1 H 1 H COSY NMR spectrum of complex 3I , d ₁ -chloroform, r.t15
Figure S13.	¹ H NMR spectra of complexes 4 Y, d ₁ -chloroform, r.t16
Figure S14.	¹ H ¹ H COSY NMR spectrum of complex 4Cl , d ₁ -chloroform, r.t16
Figure S15.	¹ H ¹ H COSY NMR spectrum of complex 4Br , d ₁ -chloroform, r.t17
Figure S16.	¹ H ¹ H COSY NMR spectrum of complex 4I , d ₁ -chloroform, r.t17
Figure S17.	Molecular structure of 1Cl, 1Br, 3I and 4Cl18
Table S3.	Selected structure parameters of 1Cl, 1Br, 2Br, 3I and 4Cl
Figure S18.	Molecular structure of 1I , 2Cl , 3Cl and 4Br 20
Table S4.	Selected structure parameters of 1I, 2Cl, 3Cl and 4Br
Figure S19.	Fragment of molecular packing of $\mathbf{1Y}$ (Y = Cl, Br). The intermolecular $\pi\pi$
distance was n	neasured between the closest atoms, distances are given in Å
Figure S20.	Fragment of molecular packing of 2Cl. The intermolecular $\pi\pi$ distance was
measured betw	veen the closest atoms, distances are given in Å22

F' (21	S3
Figure S21.	Fragment of molecular packing of 3Y (Y = Cl, 1). The intermolecular $\pi\pi$ distance
was measured b	between the closest atoms, distances are given in A
Figure S22.	Fragment of molecular packing of 4 Y (Y = Cl, Br). The intermolecular $\pi\pi$
distance was me	easured between the closest atoms, distances are given in Å23
Figure S23.	Fragments of molecular packing of $1Y$ (Y = Br, I) with XB visualization,
distances are gi	ven in Å23
Figure S24.	Fragments of molecular packing of $3Y$ (Y = Cl, I) with XB visualization,
distances are gi	ven in Å24
Figure S25.	Fragments of molecular packing of 4Br with XB visualization, distances are
given in Å.	
Table S5.	Structural parameters of XBs of 1I , 2Cl , 3Cl and 4Br 24
Table S6.	Realization of non-covalent interactions in crystal structure of 1Y – 4Y 25
Figure S26.	UV-vis spectra of Pt(II) complexes $1Y-4Y$ (Y = Cl, Br, I), DCE solution 10^{-5}
M, r.t.	
Figure S27.	Normalized excitation (dot line) and normalized emission (solid line) spectra of
Pt(II) complexe	es $1Y-4Y$ (Y = Cl, Br, I); DCE solution 10^{-5} M, r.t., registration and excitation
wavelengths are	e indicated on diagram
Figure S28.	Variable temperature solid-state emission spectra of complexes $1Y-4Y$ (Y = Cl,
Br, I); λ _{ext} 351 r	m(1Y-3Y) and 365 nm (4Y); cr = crystals, gr = ground powder27
Figure S29.	Normalized emission spectra of complexes $1Y-4Y$ (Y = Cl, Br, I) in solid-state,
crystalline samp	bles, 77K
Table S7.	Photophysical properties of complexes $1Y-4Y$ (Y = Cl, Br, I) in solid state,
crystalline samp	ples, λ_{exct} 351 nm
Table S8.	Photophysical properties of complexes $1Y-4Y$ (Y = Cl, Br, I) in solid state,
ground powder,	λ _{exct} 351 nm
Table S9.	Observed lifetime (ns) of complexes $1Y-4Y$ (Y = Cl, Br, I) in the solid-state (cr
= crystalline sau	mples, gr = ground powder)
Table S10.	Selected parameters of the 1Cl-4Cl optimized geometries (in dichloroethane
solution). The c	orresponding experimental parameters in crystal are given in parentheses
Figure S30.	Selected bond lengths (Å) in the S_0 (top) and T_1 (bottom) optimized structures of
1Cl. The distan	ces changing by more than 0.01 Å on going from S_0 to T_1 are underlined32

Figure S32. Isosurfaces (0.05) and energies (eV) of the 1Cl-4Cl α-HOMO and α-HOMO-1 in the T₁ state.
Figure S33. Mulliken charge distribution (a) and ESP mapped on the ED isosurface (b, c) in the 2Cl molecule in dichloroethane solution. The ED isovalue is 0.001 a.u. (a) and 0.01 a.u. (b)...

Scheme S1. Numeration of Pt(II) complexes 1Y-4Y (Y = Cl, Br, I).

X-Ray structure determination

The crystal structures of 1Cl, 1I, 2Cl, 2Br, 3I, 4Cl and 4Br were determined by the means of single crystal X-ray diffraction analysis. Crystals were fixed on a micro mounts and the diffraction data have been collected on the Rigaku Oxford Diffraction diffractometers at a temperature of 100K. The molecular structures of **1Br** and **3Cl** in the crystal were determined by means of single-crystal X-ray diffraction using Bruker APEX-II CCD for the data collection at a temperature of T = 150 K and T = 296 K respectively. Crystals of 1Cl, 1I, 2Cl, 2Br, 3I, 4Cl were placed on the Xcalibur, Eos diffractometer and measured using monochromated MoKa radiation. Crystals of 1Br and 3Cl were placed on the Bruker APEX-II CCD diffractometer and measured using monochromated MoKa radiation. Crystal of 4Br was placed on the XtaLAB Synergy, HyPix diffractometer and measured using monochromated CuKa radiation. Data were integrated and corrected for background, Lorentz, and polarization effects. An empirical absorption correction based on spherical harmonics implemented in the SCALE3 ABSPACK algorithm was applied in CrysAlisPro¹ or SADABS² programs. The unit-cell parameters (Tables S1 and S2) were refined by the least-squares techniques. The structures were solved by dualspace algorithm and refined using the SHELX programs^{3,4} incorporated in the OLEX2 program package.⁵ The final models included coordinates and anisotropic displacement parameters for all non-H atoms. The carbon-bound H atoms were placed in calculated positions and were included in the refinement in the 'riding' model approximation, Uiso(H) set to 1.5Ueq(C) and C-H 0.96 Å for the CH3 groups, Uiso(H) set to 1.2Ueq(C) and C-H 0.97 Å for the CH2 groups, Uiso(H) set to 1.2Ueq(C) and C-H 0.93 Å for the CH groups. Supplementary crystallographic data for this paper have been deposited at Cambridge Crystallographic Data Centre (CCDC 2254744-2254747, 2254749, 2254751, 2254752, 2254791, 2256851) and can be obtained free of charge via www.ccdc.cam.ac.uk/structures/.

Compound	1Cl	1Br	2Br	31	4Cl
Formula	$C_{16}H_{12}CIIN_2Pt$	$C_{16}H_{12}BrIN_2Pt$	$C_{18}H_{12}BrIN_2OPt$	$C_{22}H_{16}I_2N_2O_2Pt$	$C_{18}H_{12}ClIN_2PtS$
Crystal system	monoclinic	orthorhombic	monoclinic	monoclinic	orthorhombic
a (Å)	11.6368(5)	20.7756(17)	7.34450(10)	13.6171(4)	16.2664(3)
b (Å)	15.3999(12)	23.3714(19)	11.2531(2)	12.2009(3)	9.3324(2)
c (Å)	8.9903(7)	10.0722(8)	21.0064(4)	13.7764(4)	23.3511(5)
α (°)	90	90	90	90	90
β (°)	94.531(5)	90	98.666(2)	106.076(3)	90
γ (°)	90	90	90	90	90
V (Å ³)	1606.08(19)	4890.6(7)	1716.32(5)	2199.30(11)	3544.80(13)
Molecular weight	589.72	634.18	674.20	789.26	645.80
Space group	P2 ₁ /c (14)	Pnma (62)	P2 ₁ /n (14)	P2 ₁ /c (14)	Pbca (61)
μ (mm ⁻¹)	10.819	12.946	12.309	9.208	9.929
Temperature (K)	100(2)	150(2)	100(2)	100(2)	100(2)
Z	4	12	4	4	8
$D_{calc}(g/cm^3)$	2.439	2.584	2.609	2.384	2.420
Crystal size (mm ³)	$0.3\times0.2\times0.03$	0.3 imes 0.2 imes 0.2	$0.05 \times 0.04 \times 0.02$	$0.2\times0.14\times0.06$	$0.2\times0.15\times0.05$
Diffractometer	Xcalibur, Eos	Bruker APEX-II CCD	Xcalibur, Eos	Xcalibur, Eos	Xcalibur, Eos
Radiation	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα
Total reflection	7429	23265	7707	14802	38676
Unique reflection	3146	4860	3354	4320	3470
Angle range 2θ (°)	6.12 to 51.99	6.63 to 51.99	5.66 to 51.98	6.08 to 51.99	5.33 to 51.996
Reflections with	2818	4683	3014	3971	3279
$ F_o \geq 4\sigma_F$					
R _{int}	0.0282	0.0283	0.0213	0.0301	0.0368

Table S1.Crystallographic data for compounds 1Cl, 1Br, 2Br, 3I and 4Cl.

R_{σ}	0.0380	0.0229	0.0286	0.0281	0.0153
$R_1\left(F_o \geq 4\sigma_F\right)$	0.0281	0.0271	0.0212	0.0198	0.0173
$wR2\;(F_o \geq 4\sigma_F)$	0.0547	0.0557	0.0434	0.0453	0.0372
R1 (all data)	0.0338	0.0286	0.0258	0.0232	0.0193
wR2 (all data)	0.0574	0.0562	0.0450	0.0467	0.0379
S	1.042	1.210	1.064	1.063	1.148
$\rho_{max}, \rho_{min} (e/Å^3)$	1.21/-1.80	1.50/-1.26	0.74/-0.81	0.92/-0.60	0.93/-0.41
CCDC	2254745	2254744	2254746	2254747	2254749
$R_1 = \Sigma F_0 - F_c / \Sigma F_0 ; \ wR_2 = \{\Sigma_{i} \}$	$[w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{1/2}; w = 1/[\sigma^2]$	$(F_o^2)+(aP)^2+bP]$, where $P=(F_o^2+2F_c^2)/3$;	$s = {\Sigma[w(F_o^2 - F_c^2)]/(n-p)}^{1/2}$ where <i>n</i> is the	e number of reflections and p is the num	ber of refinement parameters.

Table S2.Crystallographic data for compounds 1I, 2Cl, 3Cl and 4Br.

Compound	Compound 1I 2Cl		3Cl	4Br
Formula	$C_{16}H_{12}I_2N_2Pt$	C ₁₈ H ₁₂ ClIN ₂ OPt	$C_{22}H_{16}ClIN_2O_2Pt$	$C_{18}H_{12}BrIN_2PtS$
Crystal system	orthorhombic	monoclinic	triclinic	orthorhombic
a (Å)	10.2865(2)	20.9097(8)	9.2830(6)	23.48680(10)
b (Å)	23.5155(7)	11.5922(3)	12.6518(8)	18.57310(10)
c (Å)	20.9909(4)	31.8136(9)	21.0436(15)	16.48480(10)
α (°)	90	90	90	90
β (°)	90	107.886(4)	90	90
γ (°)	90	90	99.172(3)	90
V (Å ³)	5077.5(2)	7338.6(4)	2439.9(3)	7191.04(7)
Molecular weight	681.17	629.74	697.81	690.26
Space group	Pcmn (62)	P2/c (13)	P-1 (2)	Pna21 (33)
μ (mm ⁻¹)	11.933	9.483	7.144	31.782
Temperature (K)	100(2)	100(2)	297(2)	100(2)
Z	12	16	4	16

D_{calc} (g/cm ³)	2.673	2.280	1.900	2.550
Crystal size (mm ³)	$0.18 \times 0.12 \times 0.09$	$0.33 \times 0.20 \times 0.13$	$0.78 \times 0.56 \times 0.35$	$0.24 \times 0.2 \times 0.08$
Diffractometer	Xcalibur, Eos	Xcalibur, Eos	Bruker APEX-II CCD	XtaLAB Synergy, HyPix
Radiation	ΜοΚα	ΜοΚα	ΜοΚα	CuKα
Total reflection	132557	36261	16511	128082
Unique reflection	7533	14235	5166	12891
Angle range 2θ (°)	5.20 to 59.996	5.14 to 52.00	4.85 to 55.00	6.07 to 134.98
Reflections with	7331	12252	4327	12810
$ F_o \geq 4\sigma_F$				
R _{int}	0.0507	0.0454	0.0322	0.1178
R_{σ}	0.0177	0.0513	0.0428	0.0368
$R_1\left(F_o \geq 4\sigma_F\right)$	0.0740	0.0797	0.0524	0.0781
$wR2~(F_o \ge 4\sigma_F)$	0.1674	0.1893	0.1386	0.1730
R1 (all data)	0.0753	0.0906	0.0612	0.0783
wR2 (all data)	0.1680	0.1968	0.1447	0.1731
S	1.399	1.098	1.013	1.056
$\rho_{max},\rho_{min}(e/\text{\AA}^3)$	3.26/-4.52	13.68/-2.22	3.66/-1.20	5.57/-7.07
CCDC	2256851	2254751	2254752	2254791
$R_1 = \Sigma F_0 - F_c / \Sigma F_0 ; \ wR_2 = \{ \Sigma [v] \}$	$w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]\}^{1/2}; w = 1/[\sigma^2(F_o^2) + (aP)]$	$(P^2 + bP)$, where $P = (F_o^2 + 2F_c^2)/3$; $s = \{\Sigma[w(F_o^2 - F_c^2)/3]$	$\left(\frac{n-p}{2}\right)^{1/2}$ where <i>n</i> is the number of reflections and <i>p</i> is	the number of refinement parameters.

Figure S1. ¹H NMR spectra of complexes **1Y**, d₁-chloroform, r.t.

Figure S2. ¹H¹H COSY NMR spectrum of complex **1Cl**, d₁-chloroform, r.t.

Figure S3. ¹H¹H COSY NMR spectrum of complex **1Br**, d₁-chloroform, r.t.

Figure S4. ¹H¹H COSY NMR spectrum of complex **1I**, d₁-chloroform, r.t.

Figure S5. ¹H NMR spectra of complexes **2Y**, d₁-chloroform, r.t.

Figure S6. ¹H¹H COSY NMR spectrum of complex **2Cl**, d₁-chloroform, r.t.

Figure S7. ¹H¹H COSY NMR spectrum of complex **2Br**, d₁-chloroform, r.t.

Figure S8. ¹H¹H COSY NMR spectrum of complex **2I**, d₁-chloroform, r.t.

Figure S9. ¹H NMR spectra of complexes **3Y**, d₁-chloroform, r.t.

Figure S10. ¹H¹H COSY NMR spectrum of complex 3Cl, d₁-chloroform, r.t.

Figure S11. ¹H¹H COSY NMR spectrum of complex **3Br**, d₁-chloroform, r.t.

Figure S12. ¹H¹H COSY NMR spectrum of complex **3I**, d₁-chloroform, r.t.

Figure S13. ¹H NMR spectra of complexes **4**Y, d₁-chloroform, r.t.

Figure S14. ¹H¹H COSY NMR spectrum of complex **4Cl**, d₁-chloroform, r.t.

Figure S15. ¹H¹H COSY NMR spectrum of complex **4Br**, d₁-chloroform, r.t.

Figure S16. ¹H¹H COSY NMR spectrum of complex **4I**, d₁-chloroform, r.t.

Figure S17. Molecular structure of 1Cl, 1Br, 3I and 4Cl.

	Distance, Å		Angle, °			Torsion, °		
	Pt1-N2	2.027(5)	N2-Pt1-C15	96.4(2)		C9A-N2-Pt1-Cl1	110.9(7)	
1Cl	Pt1-N1	2.006(5)	C15-Pt1-N1	82.1(2)				
ICI	Pt1-C15	1.980(6)	N1-Pt1-Cl1	95.1(1)				
	Pt1-Cl1	2.397(2)	Cl1-Pt1-N2	86.4(1)				
	Pt1A-N1A	2.018(4)	Br1A-Pt1A-N2	А	86.6(1)	C9A-N2A-Pt1A-Br1A	64.6(4)	
1Br	Pt1A-N2A	2.015(4)	N2A-Pt1A-C15	5A	94.7(2)			
	Pt1A-C15A	1.993(6)	C15A-Pt1A-N1A		81.1(2)			
	Pt1A-Br1A	2.5438(6)	N1A-Pt1A-Br1	А	97.5(1)			
	Pt1-N1	2.046(3)) N1–Pt1–Br1 96.46(9))	C9-N2-Pt1-Br1	136.6(3)	
3 D	Pt1-N2	2.034(3)	Br1-Pt1-N2	89.18(9)			
2 D I	Pt1-C17	1.941(4)	N2-Pt1-C17	95.9(2)				
	Pt1-Br1	2.5091(5)	C17-Pt1-N1	78.5(2)				
	Pt1-N3	2.022(2)	C5-Pt1-N3	91.4(1)		C24-N3-Pt1-C5	77.5(3)	
21	Pt1–I1	2.7208(4)	N3-Pt1-I1	86.00(8	5)	C12-N2-Pt1-I1	-30.0(3)	
51	Pt1-N2	2.051(2)	I1-Pt1-N2	101.44((7)			
	Pt1-C5	1.989(4)	N2-Pt1-C5	80.4(1)				
	Pt1-N2	2.018(3)	N2-Pt1-C17	94.5(1)		C9-N2-Pt1-Cl1	-88.6(2)	
401	Pt1-N1	2.022(3)	C17-Pt1-N1	79.7(1)				
4 UI	Pt1-C17	1.949(4)	N1-Pt1-Cl1	97.20(8)			
	Pt1-Cl1	2.3738(9)	C11-Pt1-N2	88.68(8)			

Table S3.Selected structure parameters of 1Cl, 1Br, 2Br, 3I and 4Cl.

Figure S18. Molecular structure of 1I, 2Cl, 3Cl and 4Br.

	Distanc	ce, Å	Angle, °		Torsion, °
	I1A-Pt1A	2.699(1)	N1A-Pt1A-C15A	80.9(6)	C9A-N2A-Pt1A-I1A 108(1)
11	Pt1A-N1A	2.02(1)	C15A-Pt1A-N2A	94.1(5)	
11	Pt1A-C15A	1.99(2)	N2A-Pt1A-I1A 85.5(3)		
	Pt1A-N2A	2.02(1)	I1A-Pt1A-N1A 99.5(4)		
	N2A-Pt1A	2.02(1)	N2A-Pt1A-Cl1A	89.5(4)	C9A-N2A-Pt1A-Cl1A -124(1)
2Cl	Pt1A-Cl1A	2.369(5)	Cl1A-Pt1A-N1A	96.1(5)	
	Pt1A-N1A	2.03(1)	N1A-Pt1A-C17A	79.6(7)	
	Pt1A-C17A	1.92(2)	C17A-Pt1A-N2A	94.8(7)	
	Cl1A-Pt1A	2.431(3)	Cl1A-Pt1A-N1A	102.2(3)	C15A-N1A-Pt1A-Cl1A -25(1)
201	Pt1A-N1A	2.03(1)	N1A-Pt1A-C21A	81.8(5)	C10A-N2A-Pt1A-Cl1A -110(1)
301	Pt1A-C21A	1.97(1)	C21A-Pt1A-N2A	91.6(5)	
	Pt1A-N2A	1.99(1)	N2A-Pt1A-Cl1A	83.5(3)	
	Br1A-Pt1A	2.492(4)	Br1A-Pt1A-N2A	89.6(7)	C9A-N2A-Pt1A-Br1A -89(2)
4 D m	Pt1A-N1A	2.05(3)	N2A-Pt1A-C17A	94(1)	
4 D1	Pt1A-C17A	1.93(3)	C17A-Pt1A-N1A	80(1)	
	Pt1A-N2A	2.02(3)	N1A-Pt1A-Br1A	97.0(7)	

Table S4.Selected structure parameters of **1I**, **2Cl**, **3Cl** and **4Br**.

Figure S19. Fragment of molecular packing of $\mathbf{1Y}$ (Y = Cl, Br). The intermolecular $\pi\pi$ distance was measured between the closest atoms, distances are given in Å.

Figure S20. Fragment of molecular packing of **2CI**. The intermolecular $\pi\pi$ distance was measured between the closest atoms, distances are given in Å.

2CI

Figure S21. Fragment of molecular packing of **3Y** (Y = Cl, I). The intermolecular $\pi\pi$ distance was measured between the closest atoms, distances are given in Å.

Figure S22. Fragment of molecular packing of **4**Y (Y = Cl, Br). The intermolecular $\pi\pi$ distance was measured between the closest atoms, distances are given in Å.

Figure S23. Fragments of molecular packing of 1Y (Y = Br, I) with XB visualization, distances are given in Å.

Figure S24. Fragments of molecular packing of **3Y** (Y = Cl, I) with XB visualization, distances are given in Å.

Figure S25. Fragments of molecular packing of **4Br** with XB visualization, distances are given in Å.

Table S5.Structural parameters of XBs of **1I**, **2Cl**, **3Cl** and **4Br**.

	Y	<i>d</i> (I…Y), Å	R _{IY} *6	C−I…Y, °	Pt–Y…I, °
11	Ι	3.5476	0.896	177.67	122.93
2Cl	Cl	3.8607	1.035	147.91	119.09
3Cl	Cl	3.4141	0.915	167.34	135.11
4Br	Ce**	3.389	_	171.11	-

* $R_{IY} = d_{I-Y}/(r_I + r_Y)$, r_I and r_Y are van der Waals radii.⁷

** Ce is centroid of metallocycle {PtNC₃}.

Table S6.Realization of non-covalent interactions in crystal structure of 1Y-4Y.

Figure S26. UV-vis spectra of Pt(II) complexes 1Y-4Y (Y = Cl, Br, I), DCE solution 10^{-5} M, r.t.

Figure S27. Normalized excitation (dot line) and normalized emission (solid line) spectra of Pt(II) complexes 1Y-4Y (Y = Cl, Br, I); DCE solution 10^{-5} M, r.t., registration and excitation wavelengths are indicated on diagram.

Figure S28. Variable temperature solid-state emission spectra of complexes 1Y-4Y (Y = Cl, Br, I); λ_{ext} 351 nm (1Y-3Y) and 365 nm (4Y); cr = crystals, gr = ground powder.

Figure S29. Normalized emission spectra of complexes 1Y-4Y (Y = Cl, Br, I) in solid-state, crystalline samples, 77K.

Complex	λ_{em}	τ_{av} , [#] ns		
Complex	298 K	77 K	298 K	77 K
1Cl	490, 523, 557, 604 ^{sh}	480, 523, 554, 608 ^{sh}	740	5328
1Br	489, 526, 566	498, 524, 536, 557	1211	6840
1I	491, 526, 561, 608 ^{sh}	496, 526, 559, 570, 607 ^{sh}	341	3795
2Cl	528, 565, 611	548, 593, 646 ^{sh}	488	10820
2Br	535 ^{sh} , 566, 613 ^{sh}	544, 566, 590, 611 ^{sh} , 646 ^{sh}	347	11450
2I	544 ^{sh} , 580, 623 ^{sh}	551, 595, 629 ^{sh}	363	10465
3Cl	650 ^{sh} , 694, 761 ^{sh}	643, 699, 769 ^{sh}	715	3290
3Br	655, 688, 760 ^{sh}	638, 682, 753 ^{sh}	781	3905
31	642 ^{sh} , 692, 754 ^{sh}	657 ^{sh} , 700, 754 ^{sh}	120	2698
4Cl	558 ^{sh} , 595, 642 ^{sh}	555, 593, 640 ^{sh}	2752	15062
4Br	554, 593, 643 ^{sh}	551, 596, 648 ^{sh}	6345	12722
4I	557, 594, 641 ^{sh}	556, 603, 658	1764	10224

Table S7. Photophysical properties of complexes 1Y-4Y (Y = Cl, Br, I) in solid state, crystalline samples, λ_{exct} 351 nm.

[#] Amplitude average lifetime $\tau_{aver} = \sum A_i \tau_i$ was calculated according to published method.⁸

Table S8. Photophysical properties of complexes 1Y-4Y (Y = Cl, Br, I) in solid state,ground powder, λ_{exct} 351 nm.

Compley	λem	, nm	τ _{av}	.	
Complex	298 K	77 K	298 K	77 K	Ψ, 70
1Cl	486, 522, 553. 601 ^{sh}	491, 523, 554, 604 ^{sh}	781	7137	1.7
1Br	487, 525, 557	497, 537, 569 ^{sh}	1163	7406	1.15
1I	489, 527, 560, 609 ^{sh}	489, 526, 559, 608 ^{sh}	439	4488	0.15
2Cl	526, 566, 612 ^{sh}	550, 594, 545 ^{sh}	410	10870	0.47
2Br	529, 567, 612 ^{sh}	544, 566, 591, 614 ^{sh} , 644 ^{sh}	340	11920	0.57
2I	540, 578, 620 ^{sh}	552, 595, 632 ^{sh}	216	7265	0.19
3Cl	646, 689, 753 ^{sh}	639, 674, 751 ^{sh}	671	3096	1.22
3Br	646, 692 ^{sh} , 757 ^{sh}	647, 694 ^{sh} , 758 ^{sh}	562	2988	1.06
3I	642 ^{sh} , 685, 753 ^{sh}	659 ^{sh} , 683, 746 ^{sh}	104	2074	n/a
4Cl	555, 593, 645 ^{sh}	559, 605, 659 ^{sh}	5468	16072	6.0
4Br	555, 592, 642 ^{sh}	552, 597, 650 ^{sh}	6737	12992	2.8
4I	556, 596, 630 ^{sh}	557, 603, 657	1598	10209	1.54

[#] Amplitude average lifetime $\tau_{aver} = \sum A_i \tau_i$ was calculated according to published method.⁸ ** 298 K

	298 K					77 K						
	τ1	A1	τ2	A ₂	τ3	A3	τ1	A1	τ2	A ₂	τ3	A3
1Cl_cr	136	0.11	463	0.56	1435	0.33	893	0.03	3298	0.46	8826	0.45
1Cl_gr	187	0.13	603	0.69	1931	0.18	1642	0.13	5167	0.59	13911	0.28
1Br_cr	47.9	0.30	312	0.27	2570	0.43	516	0.15	3747	0.47	12997	0.38
1Br_gr	80.3	0.40	512	0.24	2808	0.36	805	0.12	4741	0.57	14765	0.31
1I_cr	30.8	0.51	157	0.24	1159	0.25	360	0.23	1191	0.47	9368	0.30
1I_gr	33.5	0.33	128	0.37	1235	0.30	416	0.23	2198	0.45	10614	0.32
2Cl_cr	143	0.43	487	0.49	2211	0.08	1103	0.04	7509	0.56	16328	0.40
2Cl_gr	73	0.14	284	0.59	878	0.27	3949	0.14	10661	0.80	28104	0.06
2Br_cr	104	0.23	357	0.63	883	0.14	721	0.05	7339	0.43	15923	0.52
2Br_gr	86	0.18	309	0.63	680	0.19	1444	0.09	10640	0.79	27941	0.12
2I_cr	21.5	0.02	161	0.34	483	0.64	1604	0.07	7013	0.41	14271	0.52
2I_gr	93	0.49	264	0.47	1176	0.04	722	0.11	3901	0.43	11960	0.46
3Cl_cr	107	0.16	453	0.49	1349	0.35	454	0.04	2226	0.38	4187	0.58
3Cl_gr	110	0.12	455	0.51	1156	0.37	386	0.05	1956	0.39	4111	0.56
3Br_cr	57	0.10	355	0.44	1342	0.46	408	0.04	2288	0.32	4911	0.65
3Br_gr	64	0.16	327	0.51	1168	0.39	207	0.05	1516	0.36	4104	0.59
3I_cr	23	0.51	111	0.32	435	0.17	172	0.08	1243	0.32	3813	0.60
3I_gr	23	0.55	108	0.36	591	0.09	155	0.12	1022	0.40	3435	0.48
4Cl_cr	340	0.05	1286	0.34	3780	0.61	4355	0.07	15885	0.93	-	-
4Cl_gr	1688	0.16	6166	0.84	-	-	6582	0.09	17028	0.91	-	-
4Br_cr	1201	0.07	3797	0.39	8778	0.55	4524	0.09	13570	0.91	-	-
4Br_gr	639	0.02	2992	0.26	8279	0.72	3451	0.08	13778	0.92	-	-
4I_cr	306	0.09	970	0.41	2673	0.50	2244	0.05	10601	0.95	-	-
4I_gr	136	0.03	748	0.35	2171	0.61	935	0.02	5755	0.30	12454	0.68

Table S9. Observed lifetime (ns) of complexes 1Y-4Y (Y = Cl, Br, I) in the solid-state (cr =crystalline samples, gr = ground powder).

Complex	Distance, Å		Angle, °	
1Cl	Pt1-N2	2.025 (2.027)	N2-Pt1-C15	95.6 (96.4)
	Pt1-N1	2.018 (2.006)	C15-Pt1-N1	81.1 (82.1)
	Pt1-C15	1.981 (1.980)	N1-Pt1-Cl1	96.1 (95.1)
	Pt1-Cl1	2.427 (2.397)	Cl1-Pt1-N2	87.1 (86.4)
2CI	N2A-Pt1A	2.026 (2.02)	N2A-Pt1A-Cl1A	88.8 (89.5)
	Pt1A-Cl1A	2.399 (2.369)	Cl1A-Pt1A-N1A	95.7 (96.1)
	Pt1A–N1A	2.046 (2.03)	N1A-Pt1A-C17A	79.0 (79.6)
	Pt1A-C17A	1.937 (1.92)	C17A-Pt1A-N2A	96.4 (94.8)
3CI	Cl1A-Pt1A	2.441 (2.431)	Cl1A-Pt1A-N1A	102.0 (102.2)
	Pt1A–N1A	2.057 (2.03)	N1A-Pt1A-C21A	80.7 (81.8)
	Pt1A-C21A	1.971 (1.97)	C21A-Pt1A-N2A	93.5 (91.6)
	Pt1A-N2A	2.021 (1.99)	N2A-Pt1A-Cl1A	83.4 (83.5)
4Cl	Pt1-N2	2.028 (2.018)	N2-Pt1-C17	96.2 (94.5)
	Pt1-N1	2.030 (2.022)	C17-Pt1-N1	79.4 (79.7)
	Pt1-C17	1.953 (1.949)	N1-Pt1-Cl1	96.3 (97.20)
	Pt1-Cl1	2.397 (2.3738)	Cl1-Pt1-N2	88.2 (88.68)

Table S10.Selected parameters of the 1Cl-4Cl optimized geometries (in dichloroethanesolution).The corresponding experimental parameters in crystal are given in parentheses.

Figure S30. Selected bond lengths (Å) in the S_0 (top) and T_1 (bottom) optimized structures of **1Cl**. The distances changing by more than 0.01 Å on going from S_0 to T_1 are underlined.

Figure S31. Selected bond lengths (Å) in the S_0 (top) and T_1 (bottom) optimized structures of **3Cl**. The distances changing by more than 0.01 Å on going from S_0 to T_1 are underlined.

Figure S32. Isosurfaces (0.05) and energies (eV) of the **1Cl–4Cl** α -HOMO and α -HOMO–1 in the T₁ state.

Figure S33. Mulliken charge distribution (a) and ESP mapped on the ED isosurface (b, c) in the **2Cl** molecule in dichloroethane solution. The ED isovalue is 0.001 a.u. (a) and 0.01 a.u. (b).

Figure S34. Molecular graph of the **1Cl** dimer obtained from analysis of the electron density topology. Bonding critical points (3,-1) are presented as small green spheres. Electron densities (a.u., black) and potential energy densities (a.u., red) are given for selected critical points.

Figure S35. Calculated electronic absorption spectra of 1Cl-4Cl in dichloroethane.

S34

Figure S36. Calculated adiabatic and vertical energies of the $T_1 \rightarrow S_0$ emission in **1Cl-4Cl** (dichloroethane solution). The experimental vertical energies are given for comparison.

References

- CrysAlisPro, Rigaku Oxford Diffraction; Agilent Technologies: Version 1.171.39.35a, 2017.
- Sheldrick, G. M. A Short History of SHELX. *Acta Crystallogr. Sect. A* 2008, 64 (1), 112–122. https://doi.org/10.1107/S0108767307043930.
- (3) Sheldrick, G. M. SHELXT Integrated Space-Group and Crystal-Structure Determination.
 Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8.
 https://doi.org/10.1107/S2053273314026370.
- (4) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. https://doi.org/10.1107/S2053229614024218.
- (5) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42 (2), 339–341. https://doi.org/10.1107/S0021889808042726.
- (6) Lommerse, J. P. M.; Stone, A. J.; Taylor, R.; Allen, F. H. The Nature and Geometry of Intermolecular Interactions between Halogens and Oxygen or Nitrogen. *J. Am. Chem. Soc.* 1996, *118* (13), 3108–3116. https://doi.org/10.1021/ja953281x.
- (7) Bondi, A. Van Der Waals Volumes and Radii. J. Phys. Chem. 1964, 68 (3), 441–451. https://doi.org/10.1021/j100785a001.
- Sillen, A.; Engelborghs, Y. The Correct Use of "Average" Fluorescence Parameters. *Photochem. Photobiol.* 1998, 67 (5), 475–486. https://doi.org/10.1111/j.1751-1097.1998.tb09082.x.