In vivo and in vitro studies of $[M(\eta^6-pseudoerlotinib)_2]^+$ sandwich complexes (M = Re, ^{99m}Tc)

Federica Battistin^a*, Célia Fernandes^b, Paula. D. Raposinho^b, Olivier Blacque^a, António Paulo^b*, Roger Alberto^a

^a Department of Chemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland. federica.battistin@chem.uzh.ch

^b Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Bobadela, Portugal. apaulo@ctn.tecnico.ulisboa.pt

Table of Contents:

NMR spectra	S3
HR-ESI-MS spectra	
<i>In</i> vitro stability of [^{99m} Tc]1	
X-ray crystallography	S12
Bibliography	S14

NMR spectra

Figure S1. ¹H NMR spectrum in CD₃OD of $[Re(\eta^6-pseudoerlotinib)_2]^+$ (1).

Figure S2. ¹H-¹H COSY spectrum in CD₃OD of $[\text{Re}(\eta^6\text{-pseudoerlotinib})_2]^+(1)$.

Figure S3. ¹H-¹³C HSQC spectrum in CD₃OD of $[\text{Re}(\eta^6\text{-pseudoerlotinib})_2]^+$ (1).

Figure S4. ¹H NMR spectrum in acetone- d_6 of $[\text{Re}(\eta^6\text{-bz})(\eta^6\text{-aniline})]^+$ (2).

Figure S5. ¹H-¹H COSY spectrum in acetone- d_6 of $[\text{Re}(\eta^6-\text{bz})(\eta^6-\text{aniline})]^+$ (2).

Figure S6. ¹H-¹³C HSQC spectrum in acetone- d_6 of $[\text{Re}(\eta^6-\text{bz})(\eta^6-\text{aniline})]^+$ (2).

Figure S7. ¹H NMR spectrum in acetone- d_6 of $[\text{Re}(\eta^6-\text{bz})(\eta^6-\text{pseudoerlotinib})]^+$ (3).

Figure S8. ¹H-¹H COSY spectrum in acetone- d_6 of $[\text{Re}(\eta^6-\text{bz})(\eta^6-\text{pseudoerlotinib})]^+$ (3).

Figure S9. ¹H-¹³C HSQC spectrum in acetone- d_6 of $[\text{Re}(\eta^6\text{-bz})(\eta^6\text{-pseudoerlotinib})]^+$ (3).

HR-ESI spectra

Figure S10. HR-ESI-MS spectrum of $[Re(\eta^6-pseudoerlotinib)_2]^+(1)$.

Figure S11. HR-ESI-MS spectrum of $[Re(\eta^6-bz)(\eta^6-aniline)]^+$ (2).

Figure S12. HR-ESI-MS spectrum of $[Re(\eta^6-bz)(\eta^6-pseudoerlotinib)]^+$ (3).

in vitro stability of [99mTc]1

Figure S13. γ -traces of [^{99m}Tc]1 after purification (black line), after incubation in cell culture medium for 24h at 37 °C (blue line), after incubation in PBS at pH 7.4 for 24h at 37 °C (blue line).

X-ray crystallography

Single-crystal X-ray diffraction data of **1**, **2**, **3** were collected at 160(1) K on a Rigaku OD XtaLAB Synergy, Dualflex, Pilatus 200K diffractometer using a single wavelength X-ray source (Cu K α radiation: λ = 1.54184Å) using the copper X-ray radiation (λ = 1.54184Å) from a dual wavelength X-ray source and an Oxford Instruments Cryojet XL cooler. The selected suitable single crystal was mounted using polybutene oil on a flexible loop fixed on a goniometer head and immediately transferred to the diffractometer. Pre-experiment, data collection, data reduction and analytical absorption correction¹ were performed with the program suite CrysAlisPro.² Using Olex2,³ the structure was solved with the SHELXT⁴ small molecule structure solution program and refined with the SHELXL2018/3 program package⁵ by full-matrix least-squares minimization on F2. PLATON⁶ was used to check the result of the X-ray analysis. CCDC 2293185-2293187 contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

	[Re(η ⁶ -pseudoerlotinib) ₂] (PF ₆)Cl ₂ 2(H ₂ O) ([1]PF ₆ Cl ₂ 2(H ₂ O))	[Re(η ⁶ -bz)(η ⁶ -aniline)]PF ₆ ([2]PF ₆)	4[Re(η ⁶ -bz)(η ⁶ -pseudoerlotinib)] 4(PF ₆)2.25(H ₂ O) 0.667(CH ₂ Cl ₂) (4[3](PF ₆)2.25(H ₂ O)0.667(CH ₂ Cl ₂))	
Empirical formula	$C_{40}H_{52}Cl_{2}F_{6}N_{6}O_{10}PRe$	$C_{12}H_{13}F_6NPRe$	$\frac{C_{104.67}H_{120.43}Cl_{1.33}F_{24}N_{12}O_{17.55}}{P_4Re_4}$	
Formula weight	1178.94	502.40	3199.22	
Temperature/K	160(1)	160(1)	160.0(1)	
Crystal system	triclinic	orthorhombic	triclinic	
Space group	P-1	Immm	P-1	
a/Å	11.06150(10)	8.09180(10)	11.04098(7)	
b/Å	13.8305(3)	12.2476(2)	14.03029(9)	
c/Å	16.0904(3)	7.01550(10)	19.54390(14)	
α/°	73.359(2)	90	77.5660(6)	
β/°	71.7530(10)	90	84.5485(6)	
$\gamma/^{\circ}$	75.7690(10)	90	83.5136(5)	
Volume/Å ³	2206.68(7)	695.272(17)	2929.77(4)	
Z	2	2	1	
$ ho_{cale}g/cm^3$	1.774	2.400	1.813	
µ/mm ⁻¹	7.636	18.792	9.607	
F(000)	1184.0	472.0	1571.0	
Crystal size/mm ³	$0.15 \times 0.04 \times 0.03$	$0.18 \times 0.12 \times 0.09$	0.15 imes 0.09 imes 0.01	
Radiation	Cu Ka ($\lambda = 1.54184$)	Cu Ka ($\lambda = 1.54184$)	Cu Ka ($\lambda = 1.54184$)	
20 range for data collection/°	5.94 to 148.998	13.114 to 148.64	7.15 to 149.004	
Index ranges	$\begin{array}{l} \textbf{-12} \leq h \leq 13, \textbf{-17} \leq k \leq 17, \textbf{-20} \leq l \\ \leq 20 \end{array}$	$10 \leq h \leq 9, 15 \leq k \leq 15, 8 \leq l \leq 8$	$-13 \le h \le 13, -17 \le k \le 14, -23 \le 1 \le 24$	
Reflections collected	46323	3744	61434	
Independent reflections	$\begin{array}{l} 8981 \; [R_{int} = 0.0251, R_{sigma} = \\ 0.0172] \end{array}$	$\begin{array}{l} 436 \; [R_{int}{=}0.0280, R_{sigma}{=}\\ 0.0112] \end{array}$	11918 [$R_{int} = 0.0237$, $R_{sigma} = 0.0171$]	
Data/restraints/parameters	8981/0/627	436/108/72	11918/409/832	
Goodness-of-fit on F ²	1.130	1.172	1.050	
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0287, wR_2 = 0.0690$	$R_1 = 0.0162, wR_2 = 0.0396$	$R_1 = 0.0293, wR_2 = 0.0755$	
Final R indexes [all data]	$R_1 = 0.0292, wR_2 = 0.0692$	$R_1 = 0.0162, wR_2 = 0.0396$	$R_1 = 0.0306, wR_2 = 0.0764$	
Largest diff. peak/hole / e Å-3	1.30/-1.61	0.47/-0.70	1.09/-1.52	
CCDC Nr.	2293186	2293185	2293187	

Table S1. Crystal	data and data	collection of	of complexes	$[1](\mathrm{PF}_6)\mathrm{Cl}_2,$	$[2](PF_6)$, and	[3](TFA).

Bibliography:

- (1) Clark, R. C.; Reid, J. S. The Analytical Calculation of Absorption in Multifaceted Crystals. *Acta Crystallogr. Sect. A Found. Crystallogr.* **1995**, *51* (6), 887–897.
- (2) CrysAlisPro (version 1.171.42.57a). Rigaku Oxford Diffraction Ltd. Yarnton, Oxfordshire, England, 2022.
- (3) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr 2009, 42 (2), 339–341.
- (4) Sheldrick, G. M. SHELXT–Integrated Space-Group and Crystal-Structure Determination. *Acta Crystallogr. Sect. A Found. Adv.* **2015**, *71* (1), 3–8.
- (5) Sheldrick, G. M. Crystal Structure Refinement with SHELXLSheldrick, G. M. (2015). Crystal Structure Refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry, 71(1), 3–8. *Acta Crystallogr. Sect. C Struct. Chem.* **2015**, *71* (1), 3–8.
- (6) Spek, A. L. Structure Validation in Chemical Crystallography. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **2009**, *65* (2), 148–155.