Supporting Information

Improving Photocatalytic Hydrogen Production through Switching Charge Kinetics from Type-I to Z-scheme via Defective Engineering

Shuang Wang, Mengjie Yao, Yuye Cheng, Kai Ding, Minghao Dou, Hongyu Shao, Shuaitong Xue, Shenjie Li* and Yanyan Chen*

School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.

*Corresponding Author Email: <u>yanyanchen@hfut.edu.cn</u>; <u>shenjieli@hfut.edu.cn</u>;

Number of pages: 14

Number of figures: 9

Number of tables: 2

Number of schemes: 0

Table of Contents

Figure S1. The XRD patterns of NiS.

Figure S2. The elemental mapping images EDX (a-f) of CZNS 6.

Figure S3. XRD patterns (a) and high-resolution XPS spectra of Ni 2p (b) for CZNS 6 before and after the photocatalytic hydrogen evolution reaction.

Figure S4. The Tauc plots of NiS, CZS and CZNS 6 (a); the Mott–Schottky plots of NiS (b).

Figure S5. The Tauc plots of ZnS (a) and enlarged view for ZnS at visible region local(b); the Mott–Schottky plots of ZnS(c).

Figure S6. The photo-current curves (a) and Electrochemical Impedence Spectroscopy (EIS) (b) of CZS, NiS, and CZNS 6.

Figure S7. The Photo-Current curves (a) and Electrochemical Impedence Spectroscopy (EIS) (b) of samples with different NiS additions.

Figure S8. The band structure and charge transfer mechanism of sample CZS under visble light (> 420 nm): (a) Z-Scheme; (b) type-II.

Figure S9. The UPS sepctra of samples NiS, CZS and CZNS 6(a), and the corresponding photoemission cutoff spectra of NiS (b) and CZS (c).

Table S1. The time-resolved photoluminescence of sample CZN and CZNS 6.

Table S2. Recent heterojunction photocatalytic systems for H_2 evolution based on the Zn-Cd-S nanomaterials.

Figure S1. The XRD patterns of NiS.

Figure S2. The elemental mapping images EDX (a-f) of CZNS 6.

Figure S3. XRD patterns(a) and high-resolution XPS spectra (b) of Ni 2p for CZNS 6 before and after the photocatalytic hydrogen evolution reaction.

Figure S4. The Tauc plots of NiS, CZS and CZNS 6(a); the Mott–Schottky plots of NiS (b).

Figure S5. The Tauc plots of $(\alpha hv)^2$ versus (hv) of ZnS (a) and enlarged view for ZnS at visible region local (b); the Mott–Schottky plots of ZnS (c).

Figure S6. The photo-current curves (a) and Electrochemical Impedence Spectroscopy (EIS) (b) of CZS, NiS, and CZNS 6.

Figure S7. The photo-current curves(a) and Electrochemical Impedence Spectroscopy (EIS) (b) of samples with different NiS additions.

Figure S8. The band structure and charge transfer mechanism of sample CZS under visble light (> 420 nm): (a) Z-Scheme; (b) type-II.

Figure S9. The UPS sepctra of NiS, CZS and CZNS 6 (a), and the corresponding photoemission cutoff spectra of NiS (b) and CZS (c) .

 Table S1. The time-resolved photoluminescence of sample CZN and CZNS 6.

Samples	CZS	CZNS 6	
A ₁	1.35	1.75	
$\tau_1^a(\mathbf{ns})$	2.45	0.38	
A ₂	1.28	0.38	
$ au_2^b(\mathbf{ns})$	9.46	49.05	
A ₃	0.31		
τ ₃ ^c (ns)	85.66		
Ave τ (ns)	57.1	47.4	

Table S2. Recent heterojunction photocatalytic systems for H_2 evolution based on the Zn-Cd-S nanomaterials.

Catalyst	Weight (mg)	Sacrificial agent	Light source	H_2 evolution (mmol·g ⁻¹ ·h ⁻¹)	Reference
Cd₀.₅Zn₀.₅S nanorod	100	Na_2S and Na_2SO_3	300 W Xe lamp	2.58	1
ZnCdS/ZnCd S/ZnS	20	Na_2S and Na_2SO_3	300 W Xe lamp	0.2339	2
Pt-modified ZnCdS	25	Na_2S and Na_2SO_3	300 W Xe lamp	1.045	3
NiO/ZnCdS	40	Na_2S and Na_2SO_3	300 W Xe lamp	5.042	4
Pt-modified ZnCdS	10	Na_2S and Na_2SO_3	300 W Xe lamp	8.87	5
Zn _(1-x) Cd _x S	20	Na_2S and Na_2SO_3	300 W Xe lamp (>420 nm)	7.71	6
ZnS/g-C ₃ N ₄	50	Na_2S and Na_2SO_3	300 W Xe lamp	0.713	7
ZnCdS QDs	50	Na_2S and Na_2SO_3	300 W Xe lamp	11.32	8
ZnO/CdS	30	Na_2S and Na_2SO_3	300 W Xe lamp	7.669	9
Zn _{1-x} Cd _x S/ CdS	10	Na_2S and Na_2SO_3	300 W Xe lamp	2.7	10
ZnS/g-C₃N₄	30	Na_2S and Na_2SO_3	300 W Xe lamp	0.654	11
This work	30	Na ₂ S and Na ₂ SO ₃	300 W Xe lamp (>420 nm)	16.68	1

References

[1] M. Liu, D. Jing, Z. Zhou, L. Guo, Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation, Nature Communication, 2013, 4, 2278.

- [2] Kochev, Y. Kabachii, A. Kostrov, F. Gostev, I. Shelaev, A. Abyusu, A. Vasin, A. Titov, J. Kiwi, Fast kinetic laser spectroscopy of the exciton dynamics during photocatalytic ZnCdS/ZnCdS/ZnS QDs mediated hydrogen production, *Applied Physics A*, **2023**, *129*, 155.
- [3] Z. Wang, L. Wang, B. Cheng, H. Yu, J. Yu, Photocatalytic H₂ Evolution Coupled with Furfuralcohol Oxidation over Pt-Modified ZnCdS Solid Solution, *Small Methods*, 2021, 5, 2100979.
- [4] G. He, Y. Liu, R. Gao, Y. Gan, W. Zhao, D. Liang, T. Fujita, D. Zeng, Construction of a unique 2D/0D NiO/ZnCdS p-n hetero junction photocatalyst with highly improved photocatalytic H₂ generation capacity, *New Journal of Chemistry*, **2023**, *47*, 10995-11000.
- [5] H. Li, S. Tao, S. Wan, G. Qiu, Q. Long, J. Yu, S. Gao, S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H₂ production, *Chines Journal of Catalysis*, **2023**, *6*, 19631.
- [6] S. Du, L. Chen, C. Men, H. Ji, T. Su, Z. Qin, Effect of surface defect states on Zn_(1-x)Cd_xS for enhanced photocatalytic hydrogen evolution, *Journal of Alloys and Compounds*, 2023, 955, 170265.
- [7] X. Hao, J. ZHou, Z. Cui, Y. Wang, Y. Wang, Z. Zou, Zn-vacancy mediated electron-hole separation in ZnS/g-C₃N₄ heterojunction for efficient visible-light photocatalytic hydrogen production, *Applied Catalysis B: Environmental*, **2018**, *229*, 41-51.
- [8] W. Fan, H. Chang, J. Zhong, J. Lu, G. Ma, H, Zhang, Z. Jiang, G. Yin, Facile synthesis of ZnCdS quantum dots via a novel photoetching MOF strategy for boosting photocatalytic hydrogen evolution, *Separation and Purification Technology*, 2024, 330, 125258.
- [9] H. Lu, Y. Liu, S. Zhang, J. Wan, X. Wang, L. Deng, J. Kan, G. Wu, Clustered tubular S-scheme ZnO/CdS heterojunctions for enhanced photocatalytic hydrogen production. *Materials Science* and Engineering: B, 2023, 289, 116282.
- [10] T. Bai, X. Shi, M. Liu, H. Huang, M. Yu, J. Zhang, X. Bu, A metal-organic framework-derived Zn_{1-x}Cd_xS/CdS heterojunction for efficient visible light-driven photocatalytic hydrogen production. *Dalton Transations*, **2021**, *50*, 6064-6070.
- [11] S. Tian, H. Ren, Z. Liu, Z. Miao, L. Tian, J. Li, Y. Liu, S. Wei, P. Wang, ZnS/g-C₃N₄ heterojunction with Zn-vacancy for efficient hydrogen evolution in water splitting driven by visible light, *Catalysis Communications*, 2022, 164, 106422.