Supporting information

Controlling the C_1/C_{2+} product selectivity of electrochemical CO_2 reduction upon tuning bimetallic CuIn electrocatalyst composition and operating conditions

Lin Gu^a, Abhishek Dutta Chowdhury^{a,*}

^a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.

R. China

* Corresponding author

E-mail address: abhishek@whu.edu.cn

Experimental Section

Materials and reagents

All chemicals were used as purchased without further purification. Copper (II) nitrate trihydrate Cu(NO₃)₂·3H₂O, indium (III) nitrate hydrate In(NO₃)₃·xH₂O, and potassium bicarbonate (KHCO₃) were obtained from Innochem (Beijing) Science & Technology Co., Ltd (Beijing, China). Sodium carbonate (Na₂CO₃) was purchased from Bidepharm Co. Ltd (Shanghai, China). Nafion solution (5 %) was purchased from Dupont China Holding Co. Ltd. Potassium hydroxide (KOH) was purchased from Sinopharm Chemical Reagent Co. Ltd (Shanghai, China). High-purity CO₂ (\geq 99.99%) and Ar (\geq 99.99%) was supplied by Zxrygas Co. Ltd (Wuhan, China).

Characterization

X-ray diffraction (XRD) was performed using a Rigaku Smartlab SE system with Cu K α radiation in the 2 θ range from 5° to 90°. X-ray photoelectron spectroscopy (XPS) was performed using a Thermo ESCALAB 250Xi spectrometer, with a monochromated Al-K α (1486.6 eV). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed on a scanning microscope (Hitachi S4800 field-emission) operated at 15 kV and a transmission electron microscope (Tecnai G2 F30 S-TWIN), respectively. The TEM samples were prepared by dispersing catalyst powder in alcohol by ultra-sonication, and a droplet of this ink was dropped onto TEM grids with carbon film. The copper and indium content was determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis using the emission spectrometer (Agilent ICPOES730).

The crystallite size of $InCu_nO_x$ was calculated using the Scherrer's equation¹:

$$D = \frac{K\lambda}{B\cos\theta}$$

Where k is the configuration component (0.9), λ is the wavelength of X-ray radiation, θ is Bragg's intersection of the prominent and *B* is angular broadness of peaks at full width at half maximum (FWHM)¹.

Materials synthesis of InCu_nO_x

The InCu_nO_x-based materials were prepared by the co-precipitation-calcination method. 3.3/0.7 mmol of In(NO₃)₃·xH₂O and 0.35/0.7/2.5/4.1 mmol of Cu(NO₃)₂·3H₂O were dissolved in deionized water (14.3 mL). 94 mmol of Na₂CO₃ was also dissolved in deionized water (100 mL) to form a transparent solution and added dropwise to the above metallic solution under stirring at room temperature to reach a pH of 9.2. Then, the bimetallic precipitate was recovered by centrifugation and dried in a vacuum oven (60 °C). These materials were then calcined for 3 h at 300 °C (2 °C min⁻¹) in the static air, which led to the electrocatalysts of composition InCu_nO_x. Herein, these catalytic materials were named based on the different content of Cu (i.e., n as identified by ICP-OES, see Table S1), where n = 5, 10, 25, and 73 were synthesized by using a similar strategy by adjusting the concentration of In(NO₃)₃·xH₂O and Cu(NO₃)₂·3H₂O.

Preparation of electrodes for eCO₂R in H-type cell and flow cell

1 mg of $InCu_nO_x$ powder was dispersed into a solution containing 500 µL isopropanol, and 500 µL deionized water, and 40 µL of nafion solution (5%); subsequently, the ink was dropped onto carbon paper (1 cm × 1 cm). The $InCu_nO_x$ materials were uniformly loaded on carbon paper and acted as the working electrode (1 mg cm⁻²).

Electrochemical measurements

All electrochemical measurements were assessed using a CHI 760E electrochemical workstation with an H-type cell (Gaossunion, China) and flow cell (Dioxide Materials, America). The H-type cell experiments were carried out in a gas-tight two-compartment Htype cell separated by a Nafion-117 membrane under ambient conditions. Ag/AgCl electrode and Pt sheet electrode were used as the reference and counter electrode, respectively. CO₂saturated 0.1 M KHCO₃ was used as the electrolyte for the H-type cell (anode and cathode chambers). Flow cell studies were performed using a gas diffusion electrode (GDE) flow cell, including a Ti current collector with interdigitated gas-diffusion channels, a 3D printed chamber with ports for electrolyte flow and reference electrode, and a Ni foam inserted in a pocket of Ti current collector as the anode. Anion exchange membrane (Fumasep FAA-3-PK-130) and cation exchange membrane (Nagfion-117) were used to separate the cathode and anode chambers. A leak-free Ag/AgCl electrode was used as the reference electrode. The above-prepared electrodes were used as working electrodes with an effective area of 1 cm². The catholyte and anolyte were each 30 mL of 1 M KOH/0.1 M KHCO₃ solution circulated using peristaltic pumps (Rongbaipump, China) at a flow rate of 5 mL min⁻¹. For both H-type cell and flow cell studies, CO₂ gas flow was controlled by a mass flow controller at a specified flow rate of 20 sccm, and the applied potentials were iR-compensated and converted to the RHE scale. All the potentials in this work were converted to the reversible hydrogen electrode (RHE) according to the formula:

$$E (RHE) = E (Ag/AgCl) + 0.197 + 0.059 \times pH.$$

The reported partial current densities for eCO₂R were normalized to geometric surface

areas. Electrochemical impedance spectroscopy (EIS) and electrochemical surface area (ECSA) measurements were measured under CO₂-saturated electrolyte.

Electrochemical CO₂ reduction experiments

Electrochemical CO₂ reduction (eCO₂R) was conducted in a CO₂-saturated electrolyte. The chronoamperometry was performed at the potential range from -0.8 V to -1.2 V vs. RHE for the 0.1 M KHCO₃ and -0.5 V to -1 V vs. RHE for 1 M KOH. The gas-phase products were analyzed by an online gas chromatograph (GC, Ruimin, China). The thermal conductivity detector (TCD) was used for H₂ analysis, and the flame ionization detector (FID) was used for CO (with a methanizer), CH₄, and C₂H₄ analysis. The faradaic efficiency for gas- and liquid-

 $FE = \frac{nFCivP}{jRT}$ and $FE = \frac{nFCiv}{Q}$, respectively, where n is the number of electrons transferred for electrochemical reduction of CO₂ to each target product molecule, F is the Faraday constant (96485 C mol⁻¹), Ci is the concentration of the target product analyzed by GC or NMR (Bruker AVANCE III 600), v is the inlet gas flow rate (20 sccm), j is current. T, P, and R are the temperature, the pressure, and the gas constant, respectively. V is the volume of the cathode electrolyte, and Q is the total charge during the eCO₂R. CO₂ electrolysis was performed under various operating conditions and tested twice independently. The error bars represent standard deviation of two independent measurements conducted under the same conditions. The post-reacted InCu₅O_x and InCu₇₃O_x electrocatalysts after eCO₂R were prepared for the characterization (TEM and XPS) using a flow cell at an applied potential of -0.8 V vs. RHE for 1 h (with AEM) and an H-type cell at an applied potential of -1.2 V vs. RHE for 1 h (with CEM).

Fig. S1. (a) TEM images of as-synthesized $InCu_5O_x$ material with an average diameter of 35.0 nm. (b) TEM images of as-synthesized $InCu_{10}O_x$ material with an average diameter of 23.0 nm. (c) TEM images of as-synthesized $InCu_{25}O_x$ material with an average diameter of 42.5 nm. (d) TEM images of as-synthesized $InCu_{73}O_x$ material with an average diameter of 37.0 nm. (e) TEM images of post-reacted $InCu_5O_x$ material after eCO_2R in a flow cell (-0.8 V *vs.* RHE for 1 h) with an average diameter of 45.0 nm. (f) TEM images of post-reacted $InCu_{73}O_x$ material after eCO₂R in a flow cell (-0.8 V *vs.* RHE for 1 h) with an average diameter of 39.0 nm.

Fig. S2. EDX spectrum and elemental mappings show uniform nanoparticle morphology,

where the Cu, In, and O elements are evenly distributed over the $InCu_5O_x$ material.

Fig. S3. EDX spectrum and elemental mappings show uniform nanoparticle morphology, where the Cu, In, and O elements are evenly distributed over the $InCu_{10}O_x$ material.

Fig. S4. EDX spectrum and elemental mappings show uniform interconnected nanoparticle morphology, where the Cu, In, and O elements are evenly distributed over the $InCu_{25}O_x$ material.

Fig. S5. EDX spectrum and elemental mappings show uniform interconnected nanoparticle morphology, where the Cu, In, and O elements are evenly distributed over the $InCu_{73}O_x$ material.

Fig. S6. XPS survey scan of $InCu_nO_x$ materials comprising Cu 2p, In 3d, O 1s, and Cu LMM

spectra.

Fig. S7. To stabilize the $InCu_nO_x$ electrode surface, cyclic voltammetry (CV) measurements were performed before the eCO_2R reaction. Herein, CV curves for $InCu_nO_x$ materials were measured in CO_2 -saturated 0.1 M KHCO₃ electrolyte (pH = 6.8) using an H-type cell (CEM) with a sweeping rate of 10 mV s⁻¹ from 0 to -1.3 V versus the reversible hydrogen electrode (*vs.* RHE).

Fig. S8. The FE for different eCO_2R products at selected potentials over $InCu_{10}O_x$ materials in CO_2 -saturated 0.1 M KHCO₃ using H-type cell with CEM. See Fig. 5c for the comparable data over $InCu_{73}O_x$ material.

Fig. S9. The FE for different eCO_2R products at selected potentials over $InCu_{25}O_x$ material in CO_2 -saturated 0.1 M KHCO₃ using H-type cell with CEM. See Fig. 5c for the comparable data over $InCu_{73}O_x$ material.

Fig. S10. The FE for different eCO_2R products at selected potentials over $InCu_{73}O_x$ material in CO_2 -saturated 0.5 M KHCO₃ using H-type cell with CEM. See Fig. 5c for the comparable data over $InCu_{73}O_x$ material (0.1 M KHCO₃).

Fig. S11. CV was performed at scan rates of 10 mV s⁻¹, 20 mV s⁻¹, 30 mV s⁻¹, 40 mV s⁻¹, and 50 mV s⁻¹ in a CO₂-bubbled 0.1 M KHCO₃ electrolyte (H-type cell with CEM) for (a) InCu₅O_x, (b) InCu₁₀O_x, (c) InCu₂₅O_x, and (d) InCu₇₃O_x materials. The potential window of the CV curve was selected between 0.31 V and 0.41 V *vs*. RHE (double-layer charging and discharging interval).

Fig. S12. The FE for different eCO_2R products at selected potentials over $InCu_{73}O_x$ material in a flow cell with CEM (0.1 M KHCO₃). See Fig. 7c for the comparable data over $InCu_{73}O_x$ material (in 1 M KOH using flow cell with AEM).

Fig. S13. FE for different products at selected potentials in CO_2 -saturated 1 M KOH using a flow cell with CEM: $InCu_{73}O_x$. Six primary eCO_2R products were obtained (i.e., CO, CH₄, HCOOH, CH₃OH, C₂H₄, C₂H₅OH, and C₃H₇OH) along with HER-liberated H₂. See Fig. 7c for the comparable data over $InCu_{73}O_x$ material (with AEM).

Fig. S14. FE for different products at selected potentials in CO₂-saturated 1 M KOH using a flow cell with AEM: $InCu_5O_x$. Six primary eCO_2R products were obtained (i.e., CO, CH₄, HCOOH, CH₃OH, C₂H₄, C₂H₅OH, and C₃H₇OH) along with HER-liberated H₂. See Fig. 7c for the comparable data over $InCu_{73}O_x$ material.

Fig. S15. FE for different products at selected potentials in CO_2 -saturated 1 M KOH using a flow cell with AEM: $InCu_{10}O_x$. Six primary eCO_2R products were obtained (i.e., CO, CH₄, HCOOH, CH₃OH, C₂H₄, C₂H₅OH, and C₃H₇OH) along with HER-liberated H₂. See Fig. 7c for the comparable data over $InCu_{73}O_x$ material.

Fig. S16. FE for different products at selected potentials in CO₂-saturated 1 M KOH using a flow cell with AEM: $InCu_{25}O_x$. Six primary eCO_2R products were obtained (i.e., CO, CH₄, HCOOH, CH₃OH, C₂H₄, C₂H₅OH, and C₃H₇OH) along with HER-liberated H₂. See Fig. 7c for the comparable data over $InCu_{73}O_x$ material.

Fig. S17. Evaluation of eCO_2R electrocatalytic performance in the flow cell system with AEM (1 M KOH): Stability testing of $InCu_{73}O_x$ catalyst for 2 h. Left y-axis: current density of the $InCu_{73}O_x$ at -0.8 V vs. RHE. Right y-axis: the FE_{H2} , FE_{CO} , FE_{HCOOH} , and FE_{C2H4} .

Fig. S18. Summary of XPS characterization: (a) Cu 2p spectra of $InCu_{73}O_x$ before and after eCO_2R in a flow cell with AEM (-0.8 V vs. RHE for 1 h) and H-type cell with CEM (-1.2 V vs. RHE for 1 h). (b) In 3d spectra of $InCu_{73}O_x$ before and after eCO_2R in a flow cell with AEM (-0.8 V vs. RHE for 1 h) and H-type cell with CEM (-1.2 V vs. RHE for 1 h).

Sample	Cu loading	In loading			
	(wt%) ^a	(wt%) ^a			
InCu ₅ O _x	5.27	74.06			
InCu ₁₀ O _x	10.05	71.24			
InCu ₂₅ O _x	25.18	51.61			
InCu ₇₃ O _x	73.48	5.34			

Table S1. The atom percentage of different elements in as-synthesized catalysts

^a Estimated by ICP-OES. Since this work focuses on Cu-part of the catalyst, its ICP loading was reflected in their corresponding names.

				EDS(a40/)				crystallite		
	APS (at%)				EDS (at%)				Size (nm)	
catalyst										(-111)
	Cu^{2+a}	Cu^{+a}	Cu ^b	In ^b	O ^b	Cu	In	0		Facet of
										CuO
InCu ₅ O _x	69.15	30.85	5.46	32.12	62.41	2.67	23.33	73.99		26.12
InCu ₁₀ O _x	77.40	22.60	7.02	31.09	61.89	6.89	30.15	62.97		20.17
InCu ₂₅ O _x	82.31	17.69	12.64	25.00	62.36	8.27	30.44	61.29		21.73
InCu ₇₃ O _x	100	0	41.88	6.96	51.16	30.70	2.93	66.37		21.16

Table S2. Main textural parameters of $InCu_5O_x$, $InCu_{10}O_x$, $InCu_{25}O_x$ and $InCu_{73}O_x$.

^a Calculated by the XPS quantitative analysis using the narrow spectra (Cu 2p).

^b Calculated by the XPS survey scans.

				Main product	FE of	
Samples	E (V) <i>vs</i> . RHE	Cell-type	.1		main	Def
			electrolyte		product	Kel.
					(%)	
CuIn alloy nanowires	-1	H-type	0.1 M	СО	86	2
		cell	KHCO ₃			
Cu-In electrode	-0.6	H-type	0.1 M	СО	40	3
		cell	KHCO ₃			
Cu-In ₂ O ₃ /C	-0.7	H-type	0.1 M	СО	95	4
		cell	KHCO ₃			
CuIn-30		H-type	0.1 M	formate	87.4	5
		cell	KHCO ₃			
Cu-In hybrid	-0.59	H-type	0.1 M	СО	75.8	6
		cell	KHCO ₃			
In _{1.5} Cu _{0.5} nanoparticles	-1.2	H-type	0.1 M	СО	90	7
		cell	KHCO ₃			
dendritic copper-indium	-1	H-type	0.1 M	formate	80	8
		cell	KHCO ₃			
InCu _n O _x	-0.8	H-type	0.1 M	СО	51	This
		cell	KHCO3			work
InCu _n O _x	-0.8	Flow cell	1 M KOH	$C_{2+}(C_2H_4+C_2$	37	This
				H ₅ OH+C ₃ H ₇		work
				OH)		

 Table S3. Catalytic performance of reported bimetallic CuIn-based catalysts in literature.

References

- S. U. Din, M. Sajid, M. Imran, J. Iqbal, B. A. Shah, M. Azeem Ullah and S. Shah, Mater. Res. Express, 2019, 6, 085022.
- Q. Zhou, X. Tang, S. Qiu, L. Wang, L. Hao and Y. Yu, *Mater. Today Phys.*, 2023, 33, 101050.
- 3 S. Rasul, D. H. Anjum, A. Jedidi, Y. Minenkov, L. Cavallo and K. Takanabe, *Angew. Chemie*, 2015, **127**, 2174–2178.
- 4 Y. Jia, H. S. Hsu, W. C. Huang, D. W. Lee, S. W. Lee, T. Y. Chen, L. Zhou, J. H. Wang, K. W. Wang and S. Dai, *Nano Lett.*, 2023, **23**, 2262–2268.
- 5 J. Shao, Y. Wang, D. Gao, K. Ye, Q. Wang and G. Wang, *Chinese J. Catal.*, 2020, **41**, 1393–1400.
- 6 Q. Xie, G. O. Larrazábal, M. Ma, I. Chorkendorff, B. Seger and J. Luo, *J. Energy Chem.*, 2021, **63**, 278–284.
- 7 B. Wei, Y. Xiong, Z. Zhang, J. Hao, L. Li and W. Shi, *Appl. Catal. B Environ.*, 2021,
 283, 119646.
- Z. B. Hoffman, T. S. Gray, K. B. Moraveck, T. B. Gunnoe and G. Zangari, *ACS Catal.*,
 2017, 7, 5381–5390.