Supplementary Information

Co-doped RuO₂ nanoparticles with enhanced catalytic activity

and stability for oxygen evolution reaction

Wei Zhang¹, Jiabing Luo¹, Han Tang¹, Shutao Wang², Wenle Li¹, Jun Zhang¹, Yan Zhou^{1,*}

- 1. School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, CHINA (yanzhou@upc.edu.cn)
- 2. College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, CHINA

Fig. S1. TEM images of (a) homemade RuO_2 , (b) $Ru_{0.98}Co_{0.02}O_y$, (c) $Ru_{0.94}Co_{0.06}O_y$, (d) $Ru_{0.92}Co_{0.08}O_y$, (e) $Ru_{0.86}Co_{0.14}O_y$, (f) $Ru_{0.71}Co_{0.29}O_y$.

Fig. S2. (a) HAADF-STEM image, EDS elemental mapping of Ru_{0.98}Co_{0.02}O_y for Ru(b), Co(c), O(d), and (e) corresponding EDS spectrum.

Fig. S3. (a) HAADF-STEM image, EDS elemental mapping of Ru_{0.94}Co_{0.06}O_y for Ru(b), Co(c), O(d), and (e) corresponding EDS spectrum.

Fig. S4. (a) HAADF-STEM image, EDS elemental mapping of Ru_{0.92}Co_{0.08}O_y for Ru(b), Co(c), O(d), and (e) corresponding EDS spectrum.

Fig. S5. (a) HAADF-STEM image, EDS elemental mapping of Ru_{0.86}Co_{0.14}O_y for Ru(b), Co(c), O(d), and (e) corresponding EDS spectrum.

Fig. S6. (a) HAADF-STEM image, EDS elemental mapping of Ru_{0.71}Co_{0.29}O_y for Ru(b), Co(c), O(d), and (e) corresponding EDS spectrum.

Fig. S7. Datails of XRD pattern of homemade RuO₂ for the diffraction peak of (110), (101), (200), (211), (002) crystal planes.

Fig. S8. Rietveld refinement of XRD patterns for homemade RuO₂.

Fig. S9. Lattice constant of $Ru_{1-x}Co_xO_y$ from XRD refinement by Rietveld techniques, with the red and blue dashed lines correspond to the lattice constants a and c of the standard RuO_2 crystal respectively.

Fig. S10. The average grain size of Ru_{1-x}Co_xO_y calculated from Scherrer equation. The error bars represents the systematic error of calculation based on Scherrer equation.

Fig. S11. High-resolution XPS spectra of O 1s orbitals of Ru_{0.95}Co_{0.05}Oy.

Fig. S12. (a) XPS full spectra of Ru_{0.92}Co_{0.08}O_y and high-resolution XPS spectra of (b) Ru 3d, (c) Ru 3p,
(d) Co 2p, (e) O 1s orbitals of Ru_{0.92}Co_{0.08}O_y.

Fig. S13. (a) XPS full spectra of Ru_{0.86}Co_{0.14}O_y and high-resolution XPS spectra of (b) Ru 3d, (c) Ru 3p,
(d) Co 2p, (e) O 1s orbitals of Ru_{0.86}Co_{0.14}O_y.

Fig. S14. The position of the Ru XPS peaks in relation to the percentage of Co.

Fig. S15. CV curves in a non-Faradic region (1.024~1.124 V vs. RHE) at different scan rates of (a) Ru_{0.98}Co_{0.02}O_y, (b) Ru_{0.95}Co_{0.05}O_y, (c) Ru_{0.94}Co_{0.06}O_y, (d) Ru_{0.92}Co_{0.08}O_y, (e) Ru_{0.86}Co_{0.14}O_y, (f) Ru_{0.71}Co_{0.29}O_y. (g) homemade RuO₂ and (h) commercial RuO₂.

Fig. S16. Normalized LSV curves to electrochemically active surface area.

Fig. S17. Chronopotentiometric response (V-t) curves of (a) $Ru_{0.98}Co_{0.02}O_y$, (b) $Ru_{0.94}Co_{0.06}O_y$, (c) $Ru_{0.92}Co_{0.08}O_y$, (d) $Ru_{0.86}Co_{0.14}O_y$, (e) $Ru_{0.71}Co_{0.29}O_y$ at current densities of 100 mA cm⁻².

Fig. S18. (a) TEM images and (b) HRTEM images of Ru_{0.95}Co_{0.05}O_y after continuous operation for 50 h at current density of 100 mA cm⁻².

Fig. S19. High-resolution XPS spectra of Co 2p orbitals of Ru_{0.95}Co_{0.05}O_y after stability test.

Fig. S20. (a) XPS full spectra and high-resolution XPS spectra of (b) Ru 3d, (c) Ru 3p and (d) O 1s orbitals of homemade RuO₂ after stability test.

	At%			Percentage of Co in	
_	0	Ru	Со	metal atoms(%)	
Ru _{0.98} Co _{0.02} O _y	65.38	33.8	0.82	2.37	
$Ru_{0.95}Co_{0.05}O_y$	60.98	36.99	2.03	5.20	
$Ru_{0.94}Co_{0.06}O_y$	64.5	33.29	2.21	6.23	
$Ru_{0.92}Co_{0.08}O_y$	64.16	33.07	2.77	7.73	
$Ru_{0.86}Co_{0.14}O_y$	59.73	34.48	5.79	14.38	
$Ru_{0.71}Co_{0.29}O_y$	63.24	26.08	10.68	29.05	

Table S1. The content of Ru, Co, O in Ru_{1-x}Co_xO_y etermined by EDS elemental mapping.

Table S2. Lattice constant of $Ru_{1-x}Co_xO_y$ from XRD refinement by Rietveld techniques

Percentage of Co. dopant (%) —	Lattice Constant (Å)		
	a	c	
0	4.50923 ± 0.00076	3.08466 ± 0.0006	
2	4.51484 ± 0.00299	3.10048 ± 0.00199	
5	4.50061 ± 0.00284	3.09294 ± 0.00186	
6	4.53003 ± 0.00267	3.10346 ± 0.00183	
8	4.49488 ± 0.00156	3.07856 ± 0.00099	
14	4.46988 ± 0.00173	3.06978 ± 0.00108	
29	4.47050 ± 0.00289	3.00289 ± 0.00185	

Table S3. The content of Ru, Co, O in Ru_{0.95}Co_{0.05}O_y after the V-t test determined by EDS elemental

	Wt%	At%	Percentage in metal atoms(%)
0	23.18	65.12	
Со	2.3	1.75	5.02
Ru	74.52	33.13	94.98

Catalyst	Overpotiential ^a	Tafel	Stability ^b	Refere
	(mv)	(mv dec ⁻¹)	(n)	nce
$Ru_{0.95}Co_{0.05}O_y$	217 (@10 mA cm ⁻²) 290 (@100 mA cm ⁻²)	50.83	50 (@100 mA cm ⁻²)	This
Homemade RuO ₂	281	61.5	50 (@100 mA cm ⁻²)	work
Ru-NiCo ₂ O ₄ NSs	230	79	42	1
RuCu NSs/C	234	-	12	2
a/cRuO ₂	235	43.6	24	3
Ru ₁ Co ₂ NPs	240	54.4	8	4
RuIrO _x	250	50	-	5
RuO ₂ /NiO/NF	250	50.5	24	6
Li-IrSe ₂	270	-	10	7
Ru _{0.7} Co _{0.3} aerogel	272	41.6	12.5 (@100 mA cm ⁻²)	8
Ir@Co NSs	273	99	10	9
IrO ₂ @SL-NiFe LDHs	274	59	35	10
Ru-MoS ₂ -Mo ₂ C/TiN	280	202	50 (@20 mA cm ⁻²)	11
NiCo _{1.7} Ru _{0.3} O ₄	280	78	15	12
RuCo@NC	280	91	24	13
a-RuTe ₂ PNRs	285	62	-	14
RuO ₂ @NPC	290	64	8.33	15
Ir-NR/C	296	60.3	-	16
RuO ₂ /Co ₃ O ₄ NBs	302	75.77	-	17
CoRu–MoS ₂	308	50	16	18
Ru@RuO ₂ core-shell nanorods	320	86	25	19
Ru ₂ Ni ₂ SNs/C	357	75	-	20
CoNiRu-NT	255 (@20 mA cm ⁻²) 335 (@100 mA cm ⁻²)	67	48 (@100 mA cm ⁻²)	21

 Table S4. Comparison of OER catalytic performance with previously reported noble-metal-based

 electrocatalysts in alkaline electrolyte.

a: Overpotiential at the current density of 10 mA cm⁻² unless specifically marked.

b: Stability tests at the current density of 10 mA cm⁻² unless specifically marked.

Catalyst	Stability operation time ^a (h)	Noble metal loss (%)	Reference	
RuCoO _y -2	50 (@100 mA cm ⁻²)	0.058	T1.:1-	
Homemade RuO ₂	50 (@100 mA cm ⁻²)	0.12	I his work	
a/cRuO ₂	24	2.04	3	
Li-IrSe ₂	10 (@20 mA cm ⁻²)	0.38	7	
SrTi(Ir)O ₃	10	0.44	22	
RuNi _x @G-T	24	1.5	23	
$CaCu_3Ru_4O_{12}$	24	2.7	24	
Ru-N-C	30	5	25	

Table S5. Comparison of noble metal losses during OER durability test.

a: Stability tests at the current density of 10 mA cm⁻² unless specifically marked.

Reference

- 1. R. Yang, X. Shi, Y. Wang, J. Jin, H. Liu, J. Yin, Y.-Q. Zhao and P. Xi, *Chinese Chemical Letters*, 2022, **33**, 4930-4935.
- Q. Yao, B. Huang, N. Zhang, M. Sun, Q. Shao and X. Huang, *Angewandte Chemie International Edition*, 2019, 58, 13983-13988.
- 3. L. Zhang, H. Jang, H. Liu, M. G. Kim, D. Yang, S. Liu, X. Liu and J. Cho, *Angewandte Chemie International Edition*, 2021, **60**, 18821-18829.
- 4. Y. Bao, J. Dai, J. Zhao, Y. Wu, C. Li, L. Ji, X. Zhang and F. Yang, ACS Applied Energy Materials, 2020, 3, 1869-1874.
- Z. Zhuang, Y. Wang, C.-Q. Xu, S. Liu, C. Chen, Q. Peng, Z. Zhuang, H. Xiao, Y. Pan, S. Lu, R. Yu, W.-C. Cheong, X. Cao, K. Wu, K. Sun, Y. Wang, D. Wang, J. Li and Y. Li, *Nature Communications*, 2019, 10.
- 6. J. Liu, Y. Zheng, Y. Jiao, Z. Wang, Z. Lu, A. Vasileff and S. Z. Qiao, Small, 2018, 14.
- T. Zheng, C. Shang, Z. He, X. Wang, C. Cao, H. Li, R. Si, B. Pan, S. Zhou and J. Zeng, Angewandte Chemie International Edition, 2019, 58, 14764-14769.
- 8. Z. Lin, S. Liu, Y. Liu, Z. Liu, S. Zhang, X. Zhang, Y. Tian and Z. Tang, *Journal of Power Sources*, 2021, **514**.
- 9. D. D. Babu, Y. Huang, G. Anandhababu, X. Wang, R. Si, M. Wu, Q. Li, Y. Wang and J. Yao, Journal of Materials Chemistry A, 2019, 7, 8376-8383.
- 10. D. Li, T. Li, G. Hao, W. Guo, S. Chen, G. Liu, J. Li and Q. Zhao, *Chemical Engineering Journal*, 2020, **399**.
- V. H. Hoa, D. T. Tran, S. Prabhakaran, D. H. Kim, N. Hameed, H. Wang, N. H. Kim and J. H. Lee, *Nano Energy*, 2021, 88.
- 12. C. Peng, H. Liu, J. Chen, Y. Zhang, L. Zhu, Q. Wu, W. Zou, J. Wang, Z. Fu and Y. Lu, *Applied Surface Science*, 2021, **544**.

- 13. B. Sarkar, D. Das and K. K. Nanda, *Green Chemistry*, 2020, 22, 7884-7895.
- J. Wang, L. Han, B. Huang, Q. Shao, H. L. Xin and X. Huang, *Nature Communications*, 2019, 10.
- 15. N. Wang, S. Ning, X. Yu, D. Chen, Z. Li, J. Xu, H. Meng, D. Zhao, L. Li, Q. Liu, B. Lu and S. Chen, *Applied Catalysis B: Environmental*, 2022, **302**.
- F. Luo, L. Guo, Y. Xie, J. Xu, K. Qu and Z. Yang, *Applied Catalysis B: Environmental*, 2020, 279.
- B.-Y. Guo, X.-Y. Zhang, X. Ma, T.-S. Chen, Y. Chen, M.-L. Wen, J.-F. Qin, J. Nan, Y.-M. Chai and B. Dong, *International Journal of Hydrogen Energy*, 2020, 45, 9575-9582.
- I. S. Kwon, T. T. Debela, I. H. Kwak, Y. C. Park, J. Seo, J. Y. Shim, S. J. Yoo, J. G. Kim, J. Park and H. S. Kang, *Small*, 2020, 16.
- 19. R. Jiang, D. T. Tran, J. Li and D. Chu, *Energy & Environmental Materials*, 2019, 2, 201-208.
- 20. J. Ding, Q. Shao, Y. Feng and X. Huang, *Nano Energy*, 2018, 47, 1-7.
- Y. Wang, S. Wang, Z. L. Ma, L. T. Yan, X. B. Zhao, Y. Y. Xue, J. M. Huo, X. Yuan, S. N. Li and Q. G. Zhai, *Advanced Materials*, 2022, 34.
- 22. H. Chen, L. Shi, X. Liang, L. Wang, T. Asefa and X. Zou, *Angewandte Chemie International Edition*, 2020, **59**, 19654-19658.
- 23. X. Cui, P. Ren, C. Ma, J. Zhao, R. Chen, S. Chen, N. P. Rajan, H. Li, L. Yu, Z. Tian and D. Deng, Advanced Materials, 2020, **32**.
- 24. X. Miao, L. Zhang, L. Wu, Z. Hu, L. Shi and S. Zhou, Nature Communications, 2019, 10.
- L. Cao, Q. Luo, J. Chen, L. Wang, Y. Lin, H. Wang, X. Liu, X. Shen, W. Zhang, W. Liu, Z. Qi, Z. Jiang, J. Yang and T. Yao, *Nature Communications*, 2019, 10.