Supporting information

One-step Electrodeposition of the V-doped NiFe Nanosheets for Low-overpotential Alkaline Oxygen Evolution

Qingxiang Kong^{a,b}, Junli Wang^c, Zhenwei Liu^b, Song Wu^b, Xiaoning Tong^b, Naixuan

Zong^{*a,b*}, Bangfu Huang^{*b*}, Ruidong Xu^{*a,b**}, Linjing Yang^{*a,b**}

^a State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China

^b Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

^c Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, China

^{*} E-mail addresses: <u>rdxupaper@aliyun.com (R</u>. Xu), <u>eslinjingyang@kust.edu.cn (L</u> Yang).

Fig. S1. Optical images of (a) NF array and (b) NiFeV/NF array. The NiFeV /NF array is darker than the NF array.

Fig. S2. Raman spectra of NiFeV/NF and NiFe/NF.

Fig. S3. XPS spectra of NiFeV/NF and NiFe/NF.

Fig. S4. High-resolution XPS spectra of O1s in the prepared samples..

Fig. S5. SEM images of bare NiFeV/NF (a) and NF (b).

Fig. S6. SEM images of NiFe/NF (a) and NiFe/NF (b).

Fig. S7. Surface wettability of the NiFeV/NF (a,b) and the NiFe/NF (c,d).

Fig. S8. CV curves of NiFeV/NF and NiFe/NF.

Fig. S9. The OER LSV curves of NiFeV/NF in different (a) Concentration of V (mM)(b) electrodeposition voltages, (c) electrodeposition temperature, and (d) electrodeposition temperature time.

Fig. S10. The potential stability test of NiFeV/NF with different V concentrations at a current density of 10 mA/cm² at 1 M KOH

Electrocatalysts	R _s	CPE ₁ -T	CPE ₁ -P	R_1	CPE ₂ -T	CPE ₂ -P	R _{ct}
	$(\Omega \cdot cm^2)$	(F)	(F)	$(\Omega \cdot cm^2)$	(F)	(F)	$(\Omega \cdot cm^2)$
NiFe/NF	1.535	0.1022	0.69979	0.18817	0.080326	0.95788	0.85983
NiFeV/NF	1.512	0.10828	1.79049	0.12038	0.19539	0.93286	0.38797

Table S1. The OER electrochemical impedance parameters obtained by simulating theNyquist plots in Figure 3e with an appropriate equivalent circuit model.

Fig. S11. Cyclic voltammograms (CVs) at different scan rates of the prepared samples. a NF, b NiFe/NF, c NiFeV/NF, d RuO₂/NF.

Fig. S12. OER polarization curves for NiFeV/NF and NiFe/NF, normalized by electrical surface area (ECSA).

Catalysis									
Catalyst	Electrolyte	Overpotential	Tafel slope	Reference					
		(mV)	(mV						
		at 10 mA cm-2	dec-1)						
NiFeV/NF	1.0 M KOH	218	33	This work					
NiCoP/CC		242	64.2	1					
NiFe LDH/NF		256	50	2					
Co-Fe-P-Se/NC		270	42	3					
Ni ₃ FeN/r-GO		270	54	4					
N-NiMoO ₄ /NiS ₂ @CFC		283	44.3	5					
FeCoNi		288	60	6					
NiFeMn LDH		289	47	7					
$NaNi_{0.9}Fe_{0.1}O_2$		290	44	8					
NiFe@NC		300	56	9					
HCM@Ni-N		304	76	10					

 Table S2. Comparison of the potentials at 10 mA cm⁻² with recently reported OER catalysts

Fig. S13. SEM image and corresponding EDX mapping images of the NiFeV/NF after the OER stability test for 20 h.

Fig. S14. XPS spectra comparison of fresh NiFeV/NF electrocatalyst and NiFeV/NF electrocatalysts after the OER stability tests. (a) Ni 2p, (b)Fe 2p, and (c)V 2p.

Fig. S15. SEM images of NiFeV/NF after 20 h stability test.

Fig. S16. Schematic illustration of the OER processes on the NiFeV/NF nanosheets, where * represents the reaction sites of the electrocatalysts.

Reference

- [1] S. Song, H. Bao, X. Lin, X.-L. Du, J. Zhou, L. Zhang, N. Chen, J. Hu and J.-Q. Wang, J. Energy Chem., 2020, 42, 5-10.
- [2] Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei, J. Liu, Y. Li, X. Sun and X. Duan, Chem. Commun., 2014, 50, 6479-6482.
- [3] H. Wu, J. Wang, J. Yan, Z. Wu and W. Jin, Nanoscale, 2019, 11, 20144-20150.
- [4] Y. Gu, S. Chen, J. Ren, Y. A. Jia, C. Chen, S. Komarneni, D. Yang and X. Yao, Acs Nano, 2018, 12, 245-253.
- [5] L. An, J. Feng, Y. Zhang, R. Wang, H. Liu, G.-C. Wang, F. Cheng and P. Xi, Adv. Funct. Mater., 2019, 29.
- [6] Y. Yang, Z. Lin, S. Gao, J. Su, Z. Lun, G. Xia, J. Chen, R. Zhang and Q. Chen, ACS Catal, 2017, 7, 469-479.
- [7] Z. Lu, L. Qian, Y. Tian, Y. Li, X. Sun and X. Duan, Chem. Commun., 2016, 52, 908-911.
- [8] B. Weng, F. Xu, C. Wang, W. Meng, C. R. Grice and Y. Yan, *Energy Environ. Sci.*, 2017, 10, 121-128.
- [9] Z. Zhang, Y. Qin, M. Dou, J. Ji and F. Wang, Nano Energy, 2016, 30, 426-433.
- [10] H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang and X. W. Lou, Adv. Mate., 2019, 31.