Supplementary Material for

Investigation of Ni-Cu-acid multifunctional synergism in NiCu-phyllosilicate catalysts toward 1,4-butynediol hydrogenation to 1,4-butanediol

Changzhen Wang*a, Xueqing Hai a, Jia Li a, Yupeng Liu a, Xiaosheng

Yu^a, Yongxiang Zhao^{*a}

Engineering Research Center of Ministry of Education for Fine Chemicals,
 Shanxi University, Taiyuan, 030006, China

*Corresponding authors: czwang@sxu.edu.cn (C. Wang); yxzhao@sxu.edu.cn (Y. Zhao)

Figure S1. Schematic process for the hydrogenation of coal-based 1,4butynediol and its products network.

Figure S2. H₂-TPR profiles of Ni-Cu-P catalysts.

Note information: H₂-TPR profiles in Figure S2 provide the information about the Ni-Cu bimetallic synergy as well as the metal support interaction. Due to the distinct phyllosilicate structures of Ni-phyllosilicate (Niphy) and Cu-phyllosilicate (Cuphy), their reduction behaviors are significantly different. According to the former investigations from our and other groups, Cuphy only displayed a sharp peak centered at 290 °C, whereas Niphy displayed a sluggish reduction peak at a rather high and broad reduction temperature range centered at about 720 °C. For the bimetallic Ni₉Cu₁-P catalyst, an obvious three-stage reduction was observed. Notably, the first peak is attributed to the reduction of copper species, and another wide and high temperature reduction stage in the range of 550-800 °C can be designated to Niphy, indicating the stronger metal-support interactions in the phyllosilicate-derived NiCu-P, which can lead to higher metal dispersion and solvothermal-stability of the catalysts[1-2]. Interestingly, there was a new emerged reduction peak at 300-400 °C, which we believe is responsible for the highly active Ni species that differentiated from the Niphy matrix by the induction of promoting Cu species. In general, Cu²⁺ is more easily reducible than Ni²⁺ under similar conditions since it has much lower standard reduction potential[3], and over the Ni-Cu catalyst surface, the presence of Cu species can produce a large amount of spillover hydrogen which is able to migrate to the adjacent Ni²⁺ sites and consequently accelerates the reduction/nucleation of the nearby Ni site and improves the reducibility of Ni²⁺ species at considerably lower temperatures[4]. As a result, the Ni species bonding to the nearby Cu site has a strong bimetallic synergy effect, and is more reducible at a rather low temperature for NiCu-P. However, as the increase of Cu/Ni ratios will by no means lead to the decline of total active Ni sites number, and Ni₉Cu₁-P showed the largest amount of Cu-induced Ni⁰ species differentiated from the Niphy matrix as shown in Figure S2, which may be responsible for its superior hydrogenation activity.

Figure S3. a) N_2 adsorption-desorption isotherms and b) pore size distributions of different reduced catalysts.

Figure S4. TEM images of a referential Cu-P catalyst a) calcined and b) reduced at 500 °C. c) the mean metal particle size of Cu-P-R500 calculated by counting for more than 100 of the reduced Cu nanoparticles. d) and e) XRD patterns and the corresponding Cu crystalline sizes of the reduced Cu-P catalysts.

Catalysts	Metal content ^a / wt%		Metal species composition according to		
			TPR peak fitting °/ wt% (%)		
	Cu	Ni	Cu from phy	Diff. Ni	Ni from phy
Ni-P	0	15.9	-	-	15.9(100.0)
Ni ₉ Cu ₁ -P	1.6	15.0	1.8(10.7) ^b	5.9(35.5)	8.9(53.8)
Ni ₅ Cu ₅ -P	8.5	7.8	9.1(56.0)	5.0(31.2)	2.1(12.8)

 Table S1 Metal elemental and species compositions for Ni-Cu-P catalysts.

a The actual metal content was calculated by XRF.

b The data in parentheses is the metal species percentage integrated from the TPR peak fitting profiles.

c The metal species' composition is quantified according to their TPR percentage in the total metal content.

Catalwata	Mean metal particle size / nm			
Catarysis	R250	R500	R750	
Ni-P	6.3	10.1	12.0	
Ni ₉ Cu ₁ -P	5.8	8.8	12.3	
Ni ₅ Cu ₅ -P	3.5	5.6	10.1	

 Table S2. Mean metal particle size at different reduction temperatures.

Catalysts	BET surface area /cm ² g ⁻¹	Pore volume /cm ³ g ⁻¹	Pore diameter / nm
Ni-P-R500	128.1	0.29	9.2
Ni ₉ Cu ₁ -P- R500	117.1	0.26	8.7
Ni ₅ Cu ₅ -P- R500	129.3	0.31	9.6
Ni ₉ Cu ₁ -P- R250	117.0	0.28	8.7
Ni ₉ Cu ₁ -P- R750	114.4	0.21	7.2

 Table S3 Textural property of the reduced catalysts.

catalysts.					
Catalyst	Conversion / %	Product selectivity / %			
Cataryst		BDO	BED	HTHF	Others
Cu-P-R250	0	-	-	-	-
Cu-P-R500	1.5	0	100	0	0
Cu-P-R750	0	-	-	-	-

Table S4 Catalyst activity and selectivity tests for BYD hydrogenation over Cu-P-Rx

Catalysts	Peak temp	erature / °C	Amount of desorbed
	α-Н	β - Н	$H_2/ \text{ mmol } g^{-1}$
Ni-P-R250	82	-	0.06
Ni-P-R500	76	-	0.08
Ni-P-R750	74	-	0.10
Ni ₉ Cu ₁ -P-R250	81	122	0.09
Ni ₉ Cu ₁ -P-R500	79	109	0.12
Ni ₉ Cu ₁ -P-R750	76	-	0.05
Ni ₅ Cu ₅ -P-R250	81	124	0.09
Ni ₅ Cu ₅ -P-R500	78	113	0.06
Ni ₅ Cu ₅ -P-R750	75	-	0.05

Table S5 The peak temperature and desorded H_2 amount for NiCu-P catalysts.

Catalyzata	Peak temper	Total acidity/	
Catalysis	Weak acid	Medium strong acid	umol g ⁻¹
Ni-P-R250	104	-	1.4
Ni-P-R500	93	265	0.82
Ni-P-R750	92	-	0.39
Ni ₉ Cu ₁ -P-R250	103	-	1.38
Ni ₉ Cu ₁ -P-R500	91	248	0.75
Ni ₉ Cu ₁ -P-R750	94	-	0.43
Ni ₅ Cu ₅ -P-R250	108	-	2.62
Ni5Cu5-P-R500	98	231	0.67
Ni ₅ Cu ₅ -P-R750	102	-	0.46

 Table S6 Peak profiles and total acidity for NiCu-P catalysts according to NH₃-TPD results.

Catalysta	Metal content ^a		
Catalysts	Ni/wt%	Cu / wt%	
Ni-P-fresh	15.9	-	
Ni-P-1-time-usage	15.8	-	
Ni ₉ Cu ₁ -P-fresh	15.0	1.6	
Ni ₉ Cu ₁ -P-3-time-usage	15.2	1.5	
Ni ₉ Cu ₁ -P-6-time-usage	14.9	1.6	
Ni ₅ Cu ₅ -fresh	7.8	8.5	
Ni ₅ Cu ₅ -P-1-time-usage	7.6	8.3	

Table S7 Metal elemental composition of the fresh and spent catalysts after the cycling tests.

^a The metal content was detected by XRF results.

References

1. Kong X; Zhu Y; Zheng H; Li X; Zhu Y; Li Y-W, Ni nanoparticles inlaid nickel phyllosilicate as a metal–acid bifunctional catalyst for low-temperature hydrogenolysis reactions. ACS Catalysis **2015**, *5* (10), 5914-5920.

2. Sasaki T; Ichikuni N; Hara T; Shimazu S, Study on the promoting effect of nickel silicate for 1-phenylethanol oxidation on supported nio nanocluster catalysts. Catalysis Today **2018**, *307*, 29-34.

3. Pendem S; Mondal I; Shrotri A; Rao B S; Lingaiah N; Mondal J, Unraveling the structural properties and reactivity trends of cu–ni bimetallic nanoalloy catalysts for biomass-derived levulinic acid hydrogenation. Sustainable Energy & Fuels **2018**, *2* (7), 1516-1529.

4. Ashok J; Kathiraser Y; Ang M L; Kawi S, Ni and/or ni-cu alloys supported over sio2 catalysts synthesized via phyllosilicate structures for steam reforming of biomass tar reaction. Catalysis Science & Technology **2015**, *5* (9), 4398-4409.