Bimetallic nickel complexes containing imidazole-based phenolate ligands as efficient catalysts for copolymerization of carbon dioxide with epoxides

Han-Fang Hsu, Guan-Lin Liu, Yu-Chia Su and Bao-Tsan Ko*

Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan

Scheme S1 Synthetic pathways of ligand precursors.

Scheme S2 Selected bimetallic complexes based on amino-phenolate ligands and their catalytic performances for CO₂/CHO copolymerization.

Fig. S1 Mass spectrum of dinuclear nickel complex **1** was obtained using positive electron spray ionization (ESI⁺) technique.

Fig. S2 Molecular structure of complex **2** (30% probability level). All hydrogen atoms (except those of the coordinated water) have been omitted for clarity.

Fig. S3 Molecular structure of complex **3** (30% probability level). All hydrogen atoms (except those of the coordinated water) have been omitted for clarity.

Fig. S4 Molecular structure of complex **4** (30% probability level). All hydrogen atoms (except those of the coordinated water) have been omitted for clarity.

Fig. S5 Molecular structure of complex **5** (30% probability level). All hydrogen atoms (except those of the coordinated water) have been omitted for clarity.

Fig. S6 Molecular structure of complex **6** (30% probability level). All hydrogen atoms (except those of the coordinated water) have been omitted for clarity.

Fig. S7 Molecular structure of complex **10** (30% probability level). All hydrogen atoms have been omitted for clarity.

Fig. S8 The plot of Mn (\blacksquare) and \mathcal{D} (\blacktriangle) (determined from GPC analysis) *versus* CHO conversion for CO₂-copolymerization of CHO using dinickel complex 1 as the catalyst ([CHO]₀/[1]₀ = 1600) at 120 °C and 300 psi initial CO₂ pressure.

Fig. S9 (a) GPC traces for the generated PCHC having a bimodal molecular weight distribution mediated by dinickel complex **1** (Table 3, entry 5). (b) GPC traces for the produced PCHC polyol having a unimodal molecular weight distribution mediated by Ni complex **1** (Table 4, entry 1).

Fig. S10 ¹H NMR spectrum of the purified copolymer mediated by using dinickel complex 1 in the presence of CHD (Table 4, entry 1) in CDCl₃. The peak at δ 4.65 ppm is assigned to the methine protons of repeated units in PCHC as well as the peaks at δ 4.37 and 3.56 ppm are assigned to methine protons that are adjacent to end-capped carbonate and hydroxy in PCHC, respectively.

Fig. S11 MALDI-TOF spectrum of the generated PCHC polyol promoted by Ni complex **1** on the addition of CHD as the CTA (Table 4, entry 1).

Fig. S12 The plot of TOFs with diverse initial CO₂ pressures (200, 250, 300 and 350 psi) using dinickel complex **1** (0.0625 mol%) at 120 °C for 1 h.

Table S1 CO_2/CHO Copolymerization catalyzed by using dinickel complex 1 under various initial CO_2 pressures for 1 h

Table S2 Kinetic studies of CO_2/CHO copolymerization mediated by dinickel complex 1 at diverse monomer-to-catalyst ratio (1200, 1600, 2000, 2400, 2800 and 5000)^{*a*}

 Table S3 Kinetic parameters for CO2/CHO copolymerization mediated by dinickel complex 1 at various catalyst concentrations

Table S4 Crystallographic data of complexes 1–10

Scheme S1 Synthetic pathways of ligand precursors.

Scheme S2 Selected bimetallic complexes based on amino-phenolate ligands and their catalytic performances for CO₂/CHO copolymerization.

Fig. S1 Mass spectrum of dinuclear nickel complex 1 was obtained using positive electron spray ionization (ESI⁺) technique.

Fig. S2 Molecular structure of complex **2** (30% probability level). All hydrogen atoms (except those of the coordinated water) have been omitted for clarity.

Fig. S3 Molecular structure of complex **3** (30% probability level). All hydrogen atoms (except those of the coordinated water) have been omitted for clarity.

Fig. S4 Molecular structure of complex **4** (30% probability level). All hydrogen atoms (except those of the coordinated water) have been omitted for clarity.

Fig. S5 Molecular structure of complex **5** (30% probability level). All hydrogen atoms (except those of the coordinated water) have been omitted for clarity.

Fig. S6 Molecular structure of complex **6** (30% probability level). All hydrogen atoms (except those of the coordinated water) have been omitted for clarity.

Fig. S7 Molecular structure of complex 10 (30% probability level). All hydrogen atoms have been omitted for clarity.

Fig. S8 The plot of Mn (\blacksquare) and D (\blacktriangle) (determined from GPC analysis) *versus* CHO conversion for CO₂-copolymerization of CHO using dinickel complex **1** as the catalyst ([CHO]₀/[**1**]₀ = 1600) at 120 °C and 300 psi initial CO₂ pressure.

Fig. S9 (a) GPC traces for the generated PCHC having a bimodal molecular weight distribution mediated by dinickel complex **1** (Table 3, entry 5). (b) GPC traces for the produced PCHC polyol having a unimodal molecular weight distribution mediated by Ni complex **1** (Table 4, entry 1).

Fig. S10 ¹H NMR spectrum of the purified copolymer mediated by using dinickel complex 1 in the presence of CHD (Table 4, entry 1) in CDCl₃. The peak at δ 4.65 ppm is assigned to the methine protons of repeated units in PCHC as well as the peaks at δ 4.37 and 3.56 ppm are assigned to methine protons that are adjacent to end-capped carbonate and hydroxy in PCHC, respectively.

Fig. S11 MALDI-TOF spectrum of the generated PCHC polyol promoted by Ni complex **1** on the addition of CHD as the CTA (Table 4, entry 1).

Fig. S12 The plot of TOFs with diverse initial CO₂ pressures (200, 250, 300 and 350 psi) using dinickel complex 1 (0.0625 mol%) at 120 °C for 1 h.

 Table S1 CO₂/CHO Copolymerization catalyzed by using dinickel complex 1 under various initial

 CO₂ pressures for 1 h

Entry	Pressure	% CHO	% Copolymer ^a	TON	TOF
	/psi	Conv. ^a	$(%CO_3 \text{ linkages})^b$	ION	/h ^{-1d}
S1	200	43	96(>99)	688	688
S2	250	42	96(>99)	672	672
S3	300	39	>99(>99)	624	624
S4	350	39	>99(>99)	624	624

Copolymerization conditions: 0.0625 mol% catalyst, Temp. = 120 °C. ^{*a*}Based on ¹H NMR analysis of the reaction mixture. ^{*b*}Based on ¹H NMR determination of the purified copolymers. ^{*c*}TON = number of moles of CHO consumed per mole of catalyst. ^{*d*}TOF = TON per hour.

Entry	[CHO] ₀ :[1] ₀	Time/h	%CHO Conv. ^b	ln([CHO] ₀ /[CHO] _t)
	1200	0.5	34	0.416
S2	1200	0.75	42	0.545
S3	1200	1	54	0.777
S4	1200	1.5	67	1.109
S5	1600	1	39	0.494
S 6	1600	1.5	51	0.713
S7	1600	2	62	0.968
S 8	1600	2.5	69	1.171
S9	2000	1	35	0.431
S10	2000	1.5	44	0.580
S11	2000	2	54	0.777
S12	2000	2.5	63	0.994
S13	2400	1	25	0.288
S14	2400	1.5	36	0.446
S15	2400	2	45	0.598
S16	2400	2.5	52	0.734
S17	2800	1	22	0.248
S18	2800	1.5	31	0.371
S19	2800	2	39	0.494
S20	2800	2.5	45	0.598
S21	5000	2	22	0.248

Table S2 Kinetic studies of CO_2/CHO copolymerization mediated by dinickel complex 1 at diversemonomer-to-catalyst ratio (1200, 1600, 2000, 2400, 2800 and 5000)^a

S22	5000	3	32	0.386
S23	5000	4	39	0.494
S24	5000	5	45	0.598

^{*a*}Copolymerization conditions: 100.0 mmol CHO, 120 °C, $pCO_2^0 = 300$ psi. ^{*b*}Based on ¹H NMR analysis of the reaction mixture.

Entry [CHO] ₀ :[1] ₀		Observed rate coefficient,	$1 \cdot (1 \cdot)$	catalyst concentrations	1[1]]
		$k_{ m obs}({ m h}^{-1})^a$	$\ln(k_{\rm obs})$	[1] (M) ^b	111[1]
S1	1200	0.7099	-0.343	8.333 x 10 ⁻³	-4.788
S2	1600	0.4570	-0.783	6.250 x 10 ⁻³	-5.075
S3	2000	0.3774	-0.974	5.000 x 10 ⁻³	-5.298
S4	2400	0.2981	-1.210	4.167 x 10 ⁻³	-5.481
S5	2800	0.2343	-1.451	3.571 x 10 ⁻³	-5.635
S 6	5000	0.1157	-2.157	2.000 x 10 ⁻³	-6.215

 Table S3 Kinetic parameters for CO2/CHO copolymerization mediated by dinickel complex 1 at various catalyst concentrations

^aCalculated from the slope of the fitted regression line of Fig. 6a.

^bA fixed amount of CHO (100.0 mmol) was used.

	1·0.5[C ₃ H ₆ O]	$2 \cdot 1[H_2O] \cdot 1.5[$	$3 \cdot 1[C_6H_{14}] \cdot 1.5[$	4 ·1[H ₂ O]
				2[0611]4]
Temp (K)	150.15	181	150	150.15
Crystal system	Monoclinic	Trigonal	Triclinic	Monoclinic
Space group	$P2_1/n$	<i>R</i> -3	<i>P</i> -1	<i>P</i> 2 ₁ /n
a (Å)	12.5633(11)	38.1705(19)	14.4235(18)	15.0623(12)
b (Å)	32.882(3)	38.1705(19)	16.341(2)	47.324(4)
c (Å)	14.9737(12)	22.8167(10)	17.149(2)	11.6909(8)
α (deg)	90	90	78.062(4)	90
β (deg)	107.869(3)	90	78.226(4)	112.230(2)
$\gamma(\text{deg})$	90	120	73.085(5)	90
$V(Å^3)$	5887.3(9)	28790(3)	3738.6(9)	7714.0(10)
Z	4	18	2	4
$D_{\text{calc}}(\text{Mg/m}^3)$	1.351	1.393	1.338	1.329
μ (Mo K α)(mm ⁻¹)	0.701	0.775	0.670	0.554
<i>F</i> (000)	2512	12618	1578	3272
Reflections collected	80197	135930	50721	73662
No. of parameters	762	777	872	927
Indep. reflns (R_{int})	10338 (0.0973)	11253 (0.0851)	13111 (0.0345)	13515 (0.0746)
$R1[I > 2\sigma(I)]$	0.0967	0.0498,	0.0392	0.0778
wR2 $[I > 2\sigma(I)]$	0.2161	0.1189	0.1004	0.1687
Goodness-of-fit on F^2	1.298	1.073	1.048	1.107

 Table S4 Crystallographic data of complexes 1–10

	$5 \cdot 2[C_4 H_{10}O]$	6 ·2[C ₆ H ₁₄]	7·2[H ₂ O]·3[CH ₂ Cl ₂]	8 ·1[CH ₂ Cl ₂]·2[CH ₃ OH]
Temp (K)	150	150	150.15	150
Crystal system	Monoclinic	Triclinic	Triclinic	Triclinic
Space group	$P2_1/n$	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
a (Å)	12.1166(8)	14.930(3)	12.6449(17)	11.4310(14)
b (Å)	15.1812(11)	15.514(3)	13.4163(19)	13.7228(16)
c (Å)	40.797(3)	17.571(4)	22.200(3)	21.986(3)
α (deg)	90	98.726(7)	87.747(4)	85.922(4)
$\beta(\text{deg})$	95.998(2)	97.283(7)	74.480(4)	74.860(5)
$\gamma(\text{deg})$	90	107.756(7)	72.929(4)	84.965(4)
$V(Å^3)$	7463.3(9)	3766.0(12)	3465.8(8)	3312.1(7)
Z	4	2	2	2
$D_{\text{calc}}(\text{Mg/m}^3)$	1.403	1.451	1.485	1.423
μ (Mo K α)(mm ⁻¹)	0.584	0.588	0.850	0.756
<i>F</i> (000)	3296	1712	1592	1476
Reflections collected	98493	52911	40229	43590
No. of parameters	911	915	797	808
Indep. reflns (R_{int})	13088 (0.0822)	13208 (0.0535)	12114 (0.1011)	11577 (0.0477)
$R1[I > 2\sigma(I)]$	0.0679	0.0379	0.0955	0.0637
wR2 $[I > 2\sigma(I)]$	0.1578	0.0977	0.2416	0.1544
Goodness-of-fit on F^2	1.179	1.037	1.056	1.059

Table S4 Crystallographic data of complexes 1–10 (Cont'd)

	9 ·1[H ₂ O]	$10{\cdot}2[\mathrm{CH}_2\mathrm{Cl}_2]$
Temp (K)	150	150
Crystal system	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1
a (Å)	13.7649(7)	14.930(3)
b (Å)	13.7918(7)	15.514(3)
c (Å)	17.4684(9)	17.571(4)
α (deg)	80.804(2)	98.726(7)
$\beta(\text{deg})$	87.163(2)	97.283(7)
$\gamma(\text{deg})$	80.733(2)	107.756(7)
$V(Å^3)$	3229.9(3)	3766.0(12)
Z	2	2
$D_{\text{calc}}(\text{Mg/m}^3)$	1.457	1.451
μ (Mo K α)(mm ⁻¹)	0.659	0.588
<i>F</i> (000)	1472	1712
Reflections collected	50206	52911
No. of parameters	904	915
Indep. reflns (R_{int})	13155 (0.0420)	13208 (0.0535)
$R1[I > 2\sigma(I)]$	0.0484	0.0379
wR2 $[I > 2\sigma(I)]$	0.0979	0.0977
Goodness-of-fit on F^2	1.087	1.037

 Table S4 Crystallographic data of complexes 1–10 (Cont'd)