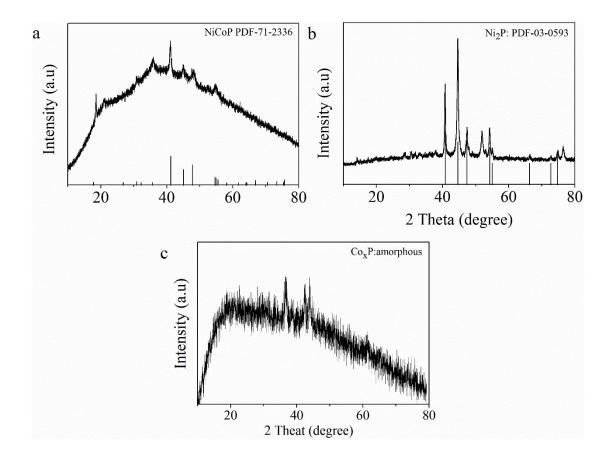
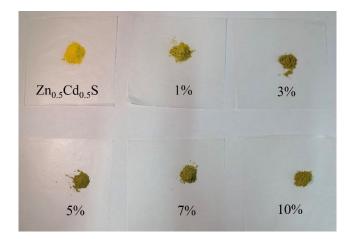
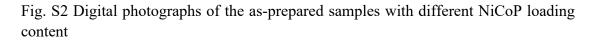
Noble metal free bimetallic phosphide decorated $Zn_{0.5}Cd_{0.5}S$ with

efficient photocatalytic H₂ evolution

Lu Chen^a*, Feng Chen^a, Yuzhou Xia^a, Ruowen Lianga, Renkun Huang^a*, Guiyang Yana, Shaoming Ying^a*


Fig. S1 XRD patterns of NiCoP, Ni₂P and Co_xP.

As shown in Fig. S1 (a, b), the XRD patterns of the NiCoP and Ni₂P nanoparticles exhibits several characteristic diffractions that could be indexed to the of NiCoP and Ni₂P (PDF# 71-2336 and PDF# 03-0953). As depicted in Fig. S1 (c), the amorphous Co_xP was prepared by the same synthesis method.

Table	1 e	lement amo	unt of 79	% NiCo	$P/Zn_{0.5}C$	$d_{0.5}S$
-------	-----	------------	-----------	--------	---------------	------------

Element	Element content (%)	Element	Element content (%)
Ni	1.88	Zn	21.32
Со	1.48	Cd	20.38
Р	1.66	S	38.77

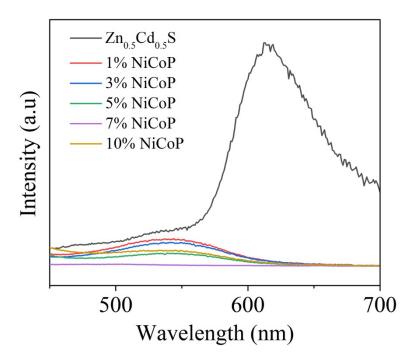


Fig. S3 photoluminescence spectra of Zn_{0.5}Cd_{0.5}S and x wt% NiCoP/Zn_{0.5}Cd_{0.5}S

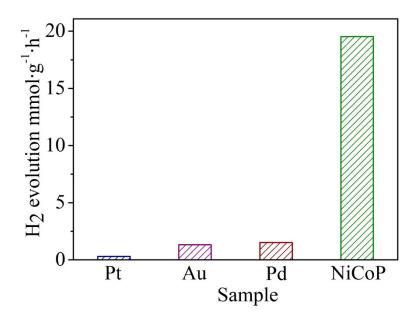


Fig. S4 Photocatalytic H_2 evolution rate of $Zn_{0.5}Cd_{0.5}S$ modified with different cocatalyst.

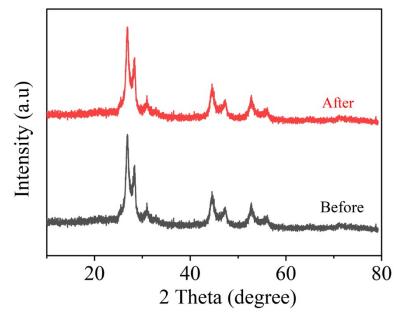


Fig. S5 XRD patterns of 7% NiCoP $/Zn_{0.5}Cd_{0.5}S$ sample before and after $\rm H_2$ evolution testing.