Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supplementary Figure 1. XRD of different powders obtained with different heating time. The data collected using a Huber G670 Guinier diffractometer (CoK α_1 radiation ($\lambda = 1.78892$ Å), with Ge (111) monochromator and image plate detector. The patterns were measured at ambient temperature with a step of 0.005° within the 4-100° 20 range. For better representation 10-80 20 range is given. Phase fraction were determined via the Rietveld refinement.

Supplementary Figure 2. Le Bail fitting of the X-ray powder diffraction pattern for NH₄GaPO₄F.

Supplementary figure 3. SEM images of NH₄GaPO₄F (left) and NaGaPO₄F (middle and right) powders.

Supplementary figure 4. Elemental distribution maps of Na, Ga, F and P.

Supplementary figure 5. Typical EDX spectrum of NaGaPO₄F.

Supplementary figure 6. Electron diffraction tomography patterns of NaGaPO₄F

Formula	NaGaPO ₄ F	
Space Group	$Pna2_1$	
<i>a</i> , Å	12.49296(15)	
b, Å	6.10945(8)	
$c, \mathrm{\AA}$	10.41321(13)	
<i>V</i> , Å ³	794.789(17)	
GOF	3.44	
$R_p, \%$	1.15	
$R_{wp}, \%$	1.53	

Supplementary table 1. Parameters of the Rietveld refinement.

Supplementary Table 2. Atomic coordinates and isotropic atomic displacement parameters.

Atom	x/a	y/b	z/c	Occupancy	U _{iso} , Å ²
Na1	0.8582(4)	0.7151(7)	0.0480(4)	1.0	0.036(1)
Na2.1	0.8990(5)	0.2683(10)	0.3346(8)	0.7880	0.036(1)

Na2.2	0.9173(18)	0.323(5)	0.393(3)	0.2120	0.036(1)
Gal	0.38928(8)	0.51449(17)	0.76610(18)	1.0	0.0054(1)
Ga2	0.23257(6)	0.26271(18)	0.000000	1.0	0.0054(1)
P1	0.4832(2)	0.3238(4)	0.0225(4)	1.0	0.0077(4)
P2	0.18708(16)	0.5166(5)	0.2568(4)	1.0	0.0077(4)
01	0.4708(4)	0.5070(11)	-0.0774(5)	1.0	0.0062(4)
02	0.4930(5)	0.4389(7)	0.1532(5)	1.0	0.0062(4)
03	0.3829(4)	0.1783(8)	0.0221(7)	1.0	0.0062(4)
04	0.5821(4)	0.1817(8)	-0.0024(8)	1.0	0.0062(4)
05	0.1195(4)	0.3176(8)	0.2966(7)	1.0	0.0062(4)
06	0.1115(4)	0.7137(8)	0.2456(5)	1.0	0.0062(4)
07	0.2742(5)	0.5530(9)	0.3601(7)	1.0	0.0062(4)
08	0.2501(4)	0.4978(15)	0.1303(7)	1.0	0.0062(4)
F1	0.2849(4)	0.5265(10)	0.6244(5)	1.0	0.0090(9)

F20.2558(4)0.4845(13)0.8791(5)1.00.0090(9)	F2	0.2558(4)	0.4845(13)	0.8791(5)	1.0	0.0090(9)
--	----	-----------	------------	-----------	-----	-----------

Supplementary Table 3. Interatomic distances.

Bond	Distance, Å	Bond	Distance, Å
Gal-Ol	1.922(5)	P1-O1	1.536(6)
Gal-O2	1.904(6)	P1-O2	1.537(6)
Gal-O5	1.882(5)	P1-O3	1.536(5)
Ga1-O6	1.850(5)	P1-O4	1.532(5)
Ga1-F1	1.970(5)	P2-O5	1.537(6)
Ga1-F2	2.049(5)	P2-O6	1.535(6)
Ga2-O3	1.961(4)	P2-O7	1.546(7)
Ga2-O4	1.911(4)	P2-O8	1.540(7)
Ga2-O7	1.942(6)		
Ga2-O8	1.987(8)		
Ga2-F1	1.952(6)		
Ga2-F2	1.873(6)		

Supplementary figure 7. The orbital-projected density of states for Ga, O and F atoms in NaGaPO₄F calculated with GGA PBE.

Supplementary Figure 8. High temperature XRD pattern of NaGaPO₄F (a), unit cell parameters at different temperatures (b), and XRD pattern of NaGaPO₄F at 450°C (c)

Supplementary figure 9. SEM images of cross-section NaGaPO₄F pellet.

Supplementary figure 10. Typical ²³Na NMR spectra obtained at the resonance frequency $v_0 = 105.8$ MHz with MAS speed, $v_{rot} = 0$ Hz, in the temperature range 295-445 K for NaGaPO₄F. The colored lines show the results of spectra deconvolution (see text)

Supplementary figure 11. Typical ²³Na NMR spectra acquired at the resonance frequency $v_0 = 105.8$ MHz with MAS speed, $v_{rot} = 10$ kHz, in the temperature range 295-445 K for NaGaPO₄F. The colored lines show the results of spectra deconvolution (see text)

Supplementary figure 12. Spin-lattice relaxation rate of the ²³Na nuclei in NaGaPO₄F, measured at a resonance frequency $v_0 = 132.3$ MHz in the temperature range 200-650 K. The inset shows the temperature behavior of the coefficient β

	SXRD	DFT	Diff, %
<i>a</i> , Å	12.49287(15)	12.67	-1.40
b, Å	6.10929(8)	6.21	-1.62
<i>c</i> , Å	10.41331(13)	10.56	-1.39
Volume, Å ³	794.772(17)	831.36	-4.40

Supplementary table 4. Comparison of DFT relaxed and experimentally refined lattice parameters.

Supplementary table 5. NEB calculated activation barriers for the selected Na vacancy-assisted hops. The hope distance was calculated as a sum of linear segments between images.

Na hop	Activation energy, eV	Pathway distance, Å	Hop distance, Å
P1	0.12	4.40	4.35
P2	0.22	4.04	3.86
Р3	0.13	3.93	3.81