Supporting Information

Synthesis, Structure and Properties of Two New Selenite Optical

Materials: K₂Zn₃Se₄O₁₂, K₄Zn₃V₄Se₂O₁₉

Qiuyuan Feng,^a Zhixia Gao,^a Ketian Hou,^b Jialong Wang,^b Hong Du^{*a} and Qun Jing^{*b}

^aCollege of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. China.

^bSchool of Physical Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, China.

*E-mails: 175790509@qq.com (Hong Du); qunjing@xju.edu.cn (Qun Jing);

Content

CCDC:

2295686

2295685

Table S1. Atomic coordinates and equivalent isotropic displacement parameters and bond valence sum (BVS) calculations for $K_2Zn_3Se_4O_{12}$. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S2. The selected bond lengths and angles of $K_2Zn_3Se_4O_{12}$.

Table S3. Atomic coordinates and equivalent isotropic displacement parameters and bond valence sum (BVS) calculations for $K_4Zn_3V_4Se_2O_{19}$. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S4. The selected bond lengths and angles of $K_4Zn_3V_4Se_2O_{19}$.

Table S5. Vanadate-selenite. Note the following compounds are all from ICSD and the anionic group is the $[VSeO_x]$ group, except for other disordered structures, fluorides, and structures containing crystalline water, all vanadate-selenite are summarized.

Figure S1. (a) Energy dispersive X-ray spectroscope (EDS) analysis for $K_2Zn_3Se_4O_{12}$.

(b) Energy dispersive X-ray spectroscope (EDS) analysis for K₄Zn₃V₄Se₂O₁₉.

Atoms	x/a	y/b	z/c	U(eq)	BVS
K(1)	-14(1)	11252(2)	1641(1)	29(1)	1.040
K(2)	5057(1)	6640(2)	3289(1)	29(1)	0.960
Zn(1)	2595(1)	8922(1)	2682(1)	20(1)	1.971
Zn(2)	6141(1)	11278(1)	4214(1)	21(1)	2.003
Zn(3)	1027(1)	6622(1)	752(1)	22(1)	1.969
Se(1)	1191(1)	11113(1)	4023(1)	19(1)	4.300
Se(2)	6165(1)	6746(1)	933(1)	16(1)	4.213
Se(3)	2458(1)	4459(1)	2254(1)	19(1)	4.242
Se(4)	7466(1)	5019(1)	4477(1)	20(1)	4.218
O(1)	5928(4)	6223(7)	-198(3)	24(1)	2.105
O(2)	6870(4)	5113(8)	3396(3)	27(1)	2.049
O(3)	1476(4)	10463(9)	2966(3)	32(1)	2.142
O(4)	5089(3)	7581(8)	1221(4)	27(1)	2.068
O(5)	1787(4)	4376(8)	1225(4)	31(1)	1.964
O(6)	738(4)	9067(7)	4434(3)	25(1)	2.186
O(7)	6255(4)	4543(7)	1447(4)	26(1)	2.037
O(8)	3533(4)	5372(10)	2025(4)	35(1)	2.088
O(9)	172(4)	12336(8)	3683(4)	32(1)	2.170
O(10)	7018(5)	2996(10)	4913(4)	47(2)	2.169
O(11)	1974(4)	6395(8)	2752(4)	36(1)	2.020
O(12)	8584(4)	4340(8)	4257(4)	34(1)	2.017

Table S1. Atomic coordinates and equivalent isotropic displacement parameters and bond valence sum (BVS)* calculations for $K_2Zn_3Se_4O_{12}$. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

(BVS)*: The bond valence sums were calculated using the formula $V_i = \sum S_{ij} = \sum exp[(r_0 - r_{ij})/B]$, where S_{ij} is the bond valence associated with bond length r_{ij} , and r_0 and B (usually 0.37) are empirically determined parameters.¹

Tuble 52. The selected son	a lenguis and any		
K(1)-O(6)#1	2.627(5)	Zn(2)-O(1)#6	1.959(5)
K(1)-O(3)	2.735(5)	Zn(2)-O(4)#3	1.980(5)
K(1)-O(9)#2	2.749(6)	Zn(2)-O(8)#3	1.989(5)
K(1)-O(12)#3	2.804(6)	Zn(3)-O(12)#3	1.954(6)
K(1)-O(11)#1	2.941(6)	Zn(3)-O(5)	1.961(5)
K(1)-O(9)	3.031(6)	Zn(3)-O(6)#8	1.966(5)
K(1)-O(5)#4	3.400(6)	Zn(3)-O(9)#2	1.985(5)
K(2)-O(2)	2.720(5)	Se(1)-O(3)	1.675(5)
K(2)-O(7)#3	2.760(5)	Se(1)-O(6)	1.678(5)
K(2)-O(8)	2.799(6)	Se(1)-O(9)	1.680(5)
K(2)-O(1)#6	2.812(5)	Se(2)-O(1)	1.676(5)
K(2)-O(4)#7	2.903(5)	Se(2)-O(4)	1.690(5)
K(2)-O(4)	3.062(6)	Se(2)-O(7)	1.691(5)
K(2)-O(8)#3	3.293(7)	Se(3)-O(5)	1.678(5)
Zn(1)-O(11)	1.952(6)	Se(3)-O(8)	1.682(5)
Zn(1)-O(3)	1.959(5)	Se(3)-O(11)	1.688(6)
Zn(1)-O(2)#3	1.969(5)	Se(4)-O(10)	1.675(6)
Zn(1)-O(7)#3	1.983(5)	Se(4)-O(12)	1.681(5)
Zn(2)-O(10)#4	1.917(6)	Se(4)-O(2)	1.698(5)
Zn(2)-O(1)#8	1.959(5)	K(2)-O(7)#7	2.760(5)
K(2)-O(1)#8	2.812(5)	Zn(2)-O(8)#7	1.989(5)
Zn(1)-O(2)#7	1.969(5)	K(2)-O(8)#7	3.293(7)
Zn(2)-O(4)#7	1.980(5)	Zn(3)-O(9)#1	1.985(5)
K(2)-O(4)#3	2.903(5)	K(1)-O(9)#1	2.749(6)
K(1)-O(5)#9	3.400(6)	Zn(2)-O(10)#9	1.917(6)
Zn(3)-O(6)#6	1.966(5)	K(1)-O(11)#2	2.941(6)
K(1)-O(6)#2	2.627(5)	Zn(3)-O(12)#7	1.954(6)
Zn(1)-O(7)#7	1.983(5)	K(1)-O(12)#7	2.804(6)
O(6)#1-K(1)-O(3)	141.45(19)	O(2)-K(2)-O(8)#3	75.63(16)
O(6)#1-K(1)-O(9)#2	127.37(18)	O(7)#3-K(2)-O(8)#3	81.95(15)
O(3)-K(1)-O(9)#2	88.06(19)	O(8)-K(2)-O(8)#3	125.24(14)
O(6)#1-K(1)-O(12)#3	108.82(18)	O(1)#6-K(2)-O(8)#3	58.65(14)
O(3)-K(1)-O(12)#3	73.05(17)	O(4)#7-K(2)-O(8)#3	147.71(14)
O(9)#2-K(1)-O(12)#3	60.45(16)	O(4)-K(2)-O(8)#3	68.59(13)
O(6)#1-K(1)-O(11)#1	80.71(16)	O(11)-Zn(1)-O(3)	96.4(3)
O(3)-K(1)-O(11)#1	117.23(17)	O(11)-Zn(1)-O(2)#3	128.0(2)
O(9)#2-K(1)-O(11)#1	91.32(16)	O(3)-Zn(1)-O(2)#3	107.8(2)
O(12)#3-K(1)-O(11)#1	150.56(18)	O(11)-Zn(1)-O(7)#3	119.6(2)
O(6)#1-K(1)-O(9)	112.64(15)	O(3)-Zn(1)-O(7)#3	110.9(2)
O(3)-K(1)-O(9)	51.66(14)	O(2)#3-Zn(1)-O(7)#3	94.0(2)
O(9)#2-K(1)-O(9)	114.00(17)	O(10)#4-Zn(2)-O(1)#6	115.6(2)
O(12)#3-K(1)-O(9)	124.65(17)	O(10)#4-Zn(2)-O(4)#3	111.8(3)
O(11)#1-K(1)-O(9)	72.31(17)	O(1)#6-Zn(2)-O(4)#3	112.1(2)

Table S2. The selected bond lengths and angles of $K_2Zn_3Se_4O_{12}$.

O(6)#1-K(1)-O(5)#4	70.88(15)	O(10)#4-Zn(2)-O(8)#3	118.7(3)
O(3)-K(1)-O(5)#4	74.35(16)	O(1)#6-Zn(2)-O(8)#3	99.8(2)
O(9)#2-K(1)-O(5)#4	129.93(15)	O(4)#3-Zn(2)-O(8)#3	96.9(2)
O(12)#3-K(1)-O(5)#4	69.58(15)	O(12)#3-Zn(3)-O(5)	128.4(2)
O(11)#1-K(1)-O(5)#4	138.51(15)	O(12)#3-Zn(3)-O(6)#8	104.9(2)
O(9)-K(1)-O(5)#4	91.15(14)	O(5)-Zn(3)-O(6)#8	101.5(2)
O(2)-K(2)-O(7)#3	153.30(17)	O(12)#3-Zn(3)-O(9)#2	90.4(2)
O(2)-K(2)-O(8)	123.60(18)	O(5)-Zn(3)-O(9)#2	119.9(3)
O(7)#3-K(2)-O(8)	81.36(17)	O(6)#8-Zn(3)-O(9)#2	110.9(2)
O(2)-K(2)-O(1)#6	80.36(16)	O(3)-Se(1)-O(6)	103.1(3)
O(7)#3-K(2)-O(1)#6	75.63(15)	O(3)-Se(1)-O(9)	97.7(3)
O(8)-K(2)-O(1)#6	155.89(18)	O(6)-Se(1)-O(9)	101.1(3)
O(2)-K(2)-O(4)#7	72.42(15)	O(1)-Se(2)-O(4)	102.6(3)
O(7)#3-K(2)-O(4)#7	127.23(16)	O(1)-Se(2)-O(7)	103.5(2)
O(8)-K(2)-O(4)#7	77.92(17)	O(4)-Se(2)-O(7)	103.2(3)
O(1)#6-K(2)-O(4)#7	110.60(15)	O(5)-Se(3)-O(8)	105.5(3)
O(2)-K(2)-O(4)	92.15(15)	O(5)-Se(3)-O(11)	101.2(3)
O(7)#3-K(2)-O(4)	93.02(15)	O(8)-Se(3)-O(11)	100.6(3)
O(8)-K(2)-O(4)	60.72(15)	O(10)-Se(4)-O(12)	102.8(3)
O(1)#6-K(2)-O(4)	126.99(15)	O(10)-Se(4)-O(2)	102.2(3)
O(4)#7-K(2)-O(4)	116.79(16)	O(12)-Se(4)-O(2)	102.4(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x,y+1/2,-z+1/2 #3 -x+1,y+1/2,-z+1/2 #6 x,-y+3/2,z+1/2 #8 x,-y+3/2,z-1/2

#2 -x,y-1/2,-z+1/2 #4 x,y+1,z #7 -x+1,y-1/2,-z+1/2

#9 x,y-1,z

#5 -x,-y+2,-z

Atoms	x/a	y/b	z/c	U(eq)	BVS
K(1)	4293(1)	6748(1)	4197(1)	22(1)	1.151
K(2)	2736(1)	13152(2)	2775(1)	31(1)	1.055
Zn(1)	9149(1)	5339(1)	6580(1)	17(1)	1.975
Zn(2)	5000	3349(1)	2500	19(1)	1.970
V(4)	6120(1)	5886(1)	3807(1)	17(1)	5.082
V(1A)	7562(1)	4033(3)	5262(2)	17(1)	5.056
V(1B)	7624(1)	4643(2)	4937(2)	16(1)	4.806
Se(1)	4387(1)	10923(1)	3896(1)	16(1)	4.046
O(1)	5310(2)	11127(4)	4165(3)	21(1)	1.980
O(2)	5818(2)	7633(4)	4034(3)	26(1)	2.103
O(3)	4335(2)	9371(4)	3107(3)	23(1)	1.988
O(4)	4167(2)	12322(4)	2986(3)	24(1)	2.046
O(5)	5388(2)	4712(4)	3666(3)	27(1)	1.882
O(6)	6747(2)	5173(4)	4977(3)	26(1)	2.032
O(7)	8099(2)	4753(5)	6229(3)	26(1)	1.742
O(8)	6534(2)	5856(5)	2754(3)	32(1)	1.910
O(9A)	7745(5)	2828(11)	4346(8)	0(2)	1.850
O(9B)	7952(4)	5834(9)	4178(7)	30(2)	1.893
O(9C)	7978(5)	3799(11)	4242(8)	0(2)	1.886

Table S3. Atomic coordinates and equivalent isotropic displacement parameters and bond valence sum (BVS)* calculations for $K_4Zn_3V_4Se_2O_{19}$. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

(BVS)*: The bond valence sums were calculated using the formula $V_i = \sum S_{ij} = \sum exp[(r_0 - r_{ij})/B]$, where S_{ij} is the bond valence associated with bond length r_{ij} , and r_0 and B (usually 0.37) are empirically determined parameters.¹

		, , , , , , , , , , , , , , , , , , ,	
K(1)-O(3)	2.708(4)	V(1A)-O(9A)	1.651(10)
K(1)-O(1)#1	2.825(4)	V(1A)-O(6)	1.807(4)
K(1)-O(8)#2	2.838(4)	V(1A)-O(9A)#12	1.831(11)
K(1)-O(5)	2.865(4)	V(1A)-O(9B)	2.293(8)
K(1)-O(6)#3	2.879(4)	V(1B)-O(9C)	1.394(10)
K(1)-O(2)	2.968(4)	V(1B)-O(9B)	1.609(8)
K(1)-O(5)#3	2.997(4)	V(1B)-O(6)	1.698(4)
K(1)-O(9C)#4	3.041(10)	V(1B)-O(7)	1.755(4)
K(1)-O(9A)#4	3.052(10)	V(1B)-O(9A)	1.799(10)
K(2)-O(9B)#4	2.710(8)	Se(1)-O(3)	1.695(4)
K(2)-O(4)	2.723(4)	Se(1)-O(1)	1.703(3)
K(2)-O(9A)#5	2.740(10)	Se(1)-O(4)	1.704(4)
K(2)-O(9C)#5	2.778(10)	Zn(1)-O(1)#8	1.965(4)
K(2)-O(7)#1	2.830(4)	K(1)-O(1)#1	2.825(4)
K(2)-O(8)#5	2.872(4)	Zn(1)-O(2)#8	1.958(4)
K(2)-O(8)#4	3.008(5)	Zn(1)-O(3)#6	1.947(4)
K(2)-O(6)#1	3.245(4)	Zn(2)-O(4)#13	1.966(4)
K(2)-O(7)#6	3.363(4)	K(1)-O(5)#3	2.997(4)
Zn(1)-O(3)#7	1.947(4)	K(1)-O(6)#3	2.879(4)
Zn(1)-O(2)#8	1.958(4)	K(2)-O(6)#1	3.245(4)
Zn(1)-O(1)#8	1.965(4)	K(2)-O(7)#1	2.830(4)
Zn(1)-O(7)	1.997(4)	K(2)-O(7)#7	3.363(4)
Zn(2)-O(5)	1.966(4)	K(1)-O(8)#2	2.838(4)
Zn(2)-O(5)#2	1.966(4)	K(2)-O(8)#10	2.872(4)
Zn(2)-O(4)#9	1.966(4)	K(2)-O(8)#11	3.008(5)
Zn(2)-O(4)#10	1.966(4)	V(1A)-O(9A)#12	1.831(11)
V(4)-O(8)	1.643(4)	K(2)-O(9A)#10	2.740(10)
V(4)-O(2)	1.680(4)	K(1)-O(9A)#11	3.052(10)
V(4)-O(5)	1.695(4)	K(2)-O(9B)#11	2.710(8)

Table S4. The selected bond lengths and angles of $K_4Zn_3V_4Se_2O_{19}$.

V(4)-O(6)	1.862(4)	K(2)-O(9C)#10	2.778(10)
V(1A)-O(7)	1.599(4)	K(1)-O(9C)#11	3.041(10)
V(1A)-O(9C)	1.620(10)	O(9A)#5-K(2)-O(6)#1	158.9(2)
O(3)-K(1)-O(1)#1	77.85(11)	O(9C)#5-K(2)-O(6)#1	139.9(2)
O(3)-K(1)-O(8)#2	80.69(12)	O(7)#1-K(2)-O(6)#1	54.18(10)
O(1)#1-K(1)-O(8)#2	151.97(12)	O(8)#5-K(2)-O(6)#1	75.04(11)
O(3)-K(1)-O(5)	109.83(12)	O(8)#4-K(2)-O(6)#1	115.89(11)
O(1)#1-K(1)-O(5)	118.37(11)	O(9B)#4-K(2)-O(7)#6	77.9(2)
O(8)#2-K(1)-O(5)	85.83(12)	O(4)-K(2)-O(7)#6	65.01(11)
O(3)-K(1)-O(6)#3	139.73(12)	O(9A)#5-K(2)-O(7)#6	53.4(2)
O(1)#1-K(1)-O(6)#3	103.59(12)	O(9C)#5-K(2)-O(7)#6	73.8(2)
O(8)#2-K(1)-O(6)#3	81.66(12)	O(7)#1-K(2)-O(7)#6	158.66(7)
O(5)-K(1)-O(6)#3	104.61(12)	O(8)#5-K(2)-O(7)#6	110.69(12)
O(3)-K(1)-O(2)	68.85(11)	O(8)#4-K(2)-O(7)#6	72.12(11)
O(1)#1-K(1)-O(2)	74.33(11)	O(6)#1-K(2)-O(7)#6	143.89(10)
O(8)#2-K(1)-O(2)	114.06(12)	O(3)#7-Zn(1)-O(2)#8	105.63(15)
O(5)-K(1)-O(2)	55.54(11)	O(3)#7-Zn(1)-O(1)#8	122.91(16)
O(6)#3-K(1)-O(2)	151.08(11)	O(2)#8-Zn(1)-O(1)#8	111.08(16)
O(3)-K(1)-O(5)#3	144.96(11)	O(3)#7-Zn(1)-O(7)	106.41(17)
O(1)#1-K(1)-O(5)#3	67.40(11)	O(2)#8-Zn(1)-O(7)	103.48(17)
O(8)#2-K(1)-O(5)#3	133.58(12)	O(1)#8-Zn(1)-O(7)	105.65(16)
O(5)-K(1)-O(5)#3	83.94(12)	O(5)-Zn(2)-O(5)#2	104.5(2)
O(6)#3-K(1)-O(5)#3	57.76(11)	O(5)-Zn(2)-O(4)#9	105.04(17)
O(2)-K(1)-O(5)#3	96.57(11)	O(5)#2-Zn(2)-O(4)#9	107.71(16)
O(3)-K(1)-O(9C)#4	65.5(2)	O(5)-Zn(2)-O(4)#10	107.71(16)
O(1)#1-K(1)-O(9C)#4	73.3(2)	O(5)#2-Zn(2)-O(4)#10	105.04(17)
O(8)#2-K(1)-O(9C)#4	81.5(2)	O(4)#9-Zn(2)-O(4)#10	125.2(2)
O(5)-K(1)-O(9C)#4	167.0(2)	O(8)-V(4)-O(2)	111.3(2)
O(6)#3-K(1)-O(9C)#4	76.3(2)	O(8)-V(4)-O(5)	111.4(2)

O(2)-K(1)-O(9C)#4	128.1(2)	O(2)-V(4)-O(5)	107.4(2)
O(5)#3-K(1)-O(9C)#4	106.9(2)	O(8)-V(4)-O(6)	109.9(2)
O(3)-K(1)-O(9A)#4	82.2(2)	O(2)-V(4)-O(6)	110.81(19)
O(1)#1-K(1)-O(9A)#4	83.8(2)	O(5)-V(4)-O(6)	105.88(19)
O(8)#2-K(1)-O(9A)#4	75.6(2)	O(7)-V(1A)-O(9C)	110.9(4)
O(5)-K(1)-O(9A)#4	156.1(2)	O(7)-V(1A)-O(9A)	129.3(4)
O(6)#3-K(1)-O(9A)#4	58.4(2)	O(9C)-V(1A)-O(9A)	34.8(5)
O(2)-K(1)-O(9A)#4	146.5(2)	O(7)-V(1A)-O(6)	109.9(2)
O(5)#3-K(1)-O(9A)#4	98.0(2)	O(9C)-V(1A)-O(6)	113.0(4)
O(9C)#4-K(1)-O(9A)#4	18.5(3)	O(9A)-V(1A)-O(6)	117.9(4)
O(9B)#4-K(2)-O(4)	71.63(18)	O(7)-V(1A)-O(9A)#12	109.1(4)
O(9B)#4-K(2)-O(9A)#5	124.7(3)	O(9C)-V(1A)-O(9A)#12	108.0(5)
O(4)-K(2)-O(9A)#5	103.9(2)	O(9A)-V(1A)-O(9A)#12	73.8(5)
O(9B)#4-K(2)-O(9C)#5	140.6(3)	O(6)-V(1A)-O(9A)#12	105.7(3)
O(4)-K(2)-O(9C)#5	118.1(2)	O(7)-V(1A)-O(9B)	88.6(3)
O(9A)#5-K(2)-O(9C)#5	20.4(3)	O(9C)-V(1A)-O(9B)	51.3(4)
O(9B)#4-K(2)-O(7)#1	103.5(2)	O(9A)-V(1A)-O(9B)	84.5(4)
O(4)-K(2)-O(7)#1	136.01(13)	O(6)-V(1A)-O(9B)	79.7(3)
O(9A)#5-K(2)-O(7)#1	113.1(2)	O(9A)#12-V(1A)-O(9B)	157.6(4)
O(9C)#5-K(2)-O(7)#1	93.7(2)	O(9C)-V(1B)-O(9B)	73.1(5)
O(9B)#4-K(2)-O(8)#5	138.93(19)	O(9C)-V(1B)-O(6)	135.1(5)
O(4)-K(2)-O(8)#5	76.22(12)	O(9B)-V(1B)-O(6)	106.6(3)
O(9A)#5-K(2)-O(8)#5	87.1(2)	O(9C)-V(1B)-O(7)	114.2(5)
O(9C)#5-K(2)-O(8)#5	77.7(2)	O(9B)-V(1B)-O(7)	110.4(3)
O(7)#1-K(2)-O(8)#5	82.55(12)	O(6)-V(1B)-O(7)	107.9(2)
O(9B)#4-K(2)-O(8)#4	62.28(18)	O(9C)-V(1B)-O(9A)	32.6(5)
O(4)-K(2)-O(8)#4	121.87(12)	O(9B)-V(1B)-O(9A)	104.3(5)
O(9A)#5-K(2)-O(8)#4	77.7(2)	O(6)-V(1B)-O(9A)	115.9(4)
O(9C)#5-K(2)-O(8)#4	83.1(2)	O(7)-V(1B)-O(9A)	111.5(4)

O(7)#1-K(2)-O(8)#4	89.50(11)	O(3)-Se(1)-O(1)	99.93(18)
O(8)#5-K(2)-O(8)#4	158.60(9)	O(3)-Se(1)-O(4)	101.12(19)
O(9B)#4-K(2)-O(6)#1	76.3(2)	O(1)-Se(1)-O(4)	101.11(18)
O(4)-K(2)-O(6)#1	83.04(11)		

Sym	nmetry	y tran	sformations	used to) gene	rate	equivalent	atoms:
#1	$\mathbf{v} \perp 1$. .⊥γ	- ⊥1	#2	$\mathbf{v} \perp 1$, 7 4	1/2	<i>#</i> ′

#1 -x+1,-y+2,-z+1	#2 -x+1,y,-z+1/2	#3 -x+1,-y+1,-z+1
#4 x-1/2,y+1/2,z	#5 -x+1,y+1,-z+1/2	#6 x-1/2,-y+3/2,z-1/2
#7 x+1/2,-y+3/2,z+1/2	#7 x+1/2,-y+3/2,z+1/2	#9 x,y-1,z
#10 -x+1,y-1,-z+1/2	#11 x+1/2,y-1/2,z	#12 -x+3/2,-y+1/2,-z+1
#13 x,y+1,z		

Table S5. Vanadate-selenite. Note the following compounds are all from ICSD and the anionic group is the $[VSeO_x]$ group, except for other disordered structures, fluorides, and structures containing crystalline water, all vanadate-selenite are summarized.

No.	Compounds	Dimension	Basic units	Space group	Ref.
1	Cs(VSeO ₅)	0D	[VO ₅]	<i>P</i> 2 ₁	2
2	$V_2(Se_2O_9)$	0D	[V ₄ O ₁₈]	$P2_{1}/c$	3
3	$(VO)_2(SeO_3)_3$	0D	[VO ₅]	$P2_{1}/c$	4
4	Cu(VO)(SeO ₃) ₂	0D	$[V_2O_{10}]$	$P2_{1}/c$	5
5	$V_2Se_2O_9$	0D	[VO ₅]	$P2_{1}/c$	6
6	$Nd_7VO_4Se_8$	0D	[VSe ₂ O ₂]	Pbam	7
7	$\mathrm{Sm}_{7}\mathrm{VO}_{4}\mathrm{Se}_{8}$	0D	[VSe ₂ O ₂]	Pbam	7
8	$V_2O_3(SeO_4)_2$	0D	$[V_2O_{11}]$	<i>C</i> 2/ <i>c</i>	8
9	$Pb_2V_2Se_2O_{11}$	0D	$[V_4O_{16}]$	$P\overline{1}$	9
10	$Pb_2V_3Se_5O_{18}$	0D	[VO6]	Pnma	9
11	ScVSe ₂ O ₈	0D	$[V_2O_{10}]$	$P2_{1}/c$	10
12	ScVSe ₂ O ₈	0D	$[V_2O_7]$	$P2_{1}/c$	10
13	Sr ₂ (VO) ₃ (SeO ₃) ₅	0D	[VO ₆]	Pnma	11
14	Ba ₃ (VO ₂) ₂ (SeO ₃) ₄	0D	[VO ₅]	$P2_{1}/c$	11
15	$Sr_2(VO_2)_2(SeO_3)_3$	0D	$[VO_5]+[VO_6]$	$P2_{1}/c$	12
16	$Sr_4(VO_2)_2(SeO_3)_4(Se_2O_5)$	0D	[VO ₅]	Fdd2	12
17	$Pb_4(VO_2)_2(SeO_3)_4(Se_2O_5)$	0D	[VO ₅]	Fdd2	12
18	$(V_2O_3)(SeO_3)_2$	0D	$[V_4O_{18}]$	$P2_{1}/c$	13
19	$Pb_2(VO)(SeO_3)_3$	0D	$[VO_6]$	$P2_{1}/c$	13
20	VOSe ₂ O ₅	1D	[VO ₆]	P4cc	14
21	VO(SeO ₃)	1D	$[VO_6]$	$P2_{1}/c$	15
22	$K(V_2SeO_7)$	1D	$[VO_4]+[VO_6]$	Pnma	16
23	$Rb(V_2SeO_7)$	1D	$[VO_4]+[VO_6]$	Pnma	17
24	TlSeVO ₅	1D	[VO ₆]	$Pna2_1$	18

25	$Th(VO_3)_2(SeO_3)$	1D	[VO ₅]	Pbcm	19
26	$La_5V_3Se_6O_7$	1D	[VSe ₄ O ₂]	Pmmn	20
27	La ₇ VSe ₅ O ₇	1D	[VSe ₄ O ₂]	Стст	20
28	$La_{13}V_7Se_{16}O_{15}$	1D	$[VSe_4O_2] + [VSe_5O]$	$Cmc2_1$	20
29	$Bi_2V_2Se_4O_{16}$	1D	[VO ₆]	$P2_{1}/c$	9
30	$ZnV(Se_2O_7)$	1D	$[\mathrm{VO}_5] + [\mathrm{VO}_6]$	$P2_{1}/c$	21
31	$Cd_6V_2Se_5O_{21}$	1D	[VO ₄]	$P2_{1}/c$	21
32	InVSe ₂ O ₈	1D	[VO ₅]	Pm	22
33	$\mathrm{Co}_2\mathrm{V}_2\mathrm{Se}_2\mathrm{O}_{11}$	1D	$[\mathrm{VO}_5] + [\mathrm{VO}_6]$	$P2_{1}/m$	23
34	Eu(VSe ₂ O ₈)	1D	$[VO_5]$	$P2_{1}/m$	24
35	$Gd(VSe_2O_8)$	1D	[VO ₆]	$P2_{1}/m$	24
36	$Tb(VSe_2O_8)$	1D	[VO ₆]	$P2_{1}/m$	24
37	$V_2Se_2O_9$	2D	[VO ₆]	$P2_{1}/c$	25
38	$(NH_4)(VO_2)_3(SeO_3)_2$	2D	[VO ₆]	<i>P</i> 6 ₃	26
39	K(VO ₂) ₃ (SeO ₃) ₂	2D	[VO ₆]	<i>P</i> 6 ₃	27
40	$Rb(Se_2V_3O_{12})$	2D	[VO ₆]	<i>P</i> 6 ₃	28
41	$Tl(Se_2V_3O_{12})$	2D	$[VO_6]$	<i>P</i> 6 ₃	28
42	$Cs(VO_2)_3(SeO_3)_2$	2D	[VO ₆]	<i>P</i> 6 ₃	29
43	YVSe ₂ O ₈	2D	[VO ₆]	Abm2	30
44	LaVSe ₂ O	2D	$[VSe_4O_2] + [VSe_6]$	<i>C</i> 2/ <i>m</i>	20
45	$La_5V_3Se_7O_5$	2D	$[VSe_4O_2] + [VSe_6]$	Pnma	20
46	$Ba(V_2O_5)(SeO_3)$	2D	$[VO_5] + [VO_6]$	Pnma	12
47	AgV(SeO ₅)	2D	[VO ₄]	Pbcm	31

Figure S1. (a) Energy dispersive X-ray spectroscope (EDS) analysis for K₂Zn₃Se₄O₁₂.
(b) Energy dispersive X-ray spectroscope (EDS) analysis for K₄Zn₃V₄Se₂O₁₉.

- 1. N. Brese, M. O'keeffe, Acta. crystallogr. B., Structural Science, 1991, 47, 192-197.
- 2. Y. U. Kwon, K. S. Lee, Y. H. Kim, *Inorg. Chem.*, 1996, **35**, 1161-1167.
- 3. B. H. Lee, N. M. Lee, J Korean Chem Soc., 2015, 59, 379-386.
- 4. P. S. Halasyamani, D. O'Hare, *Inorg. Chem.*, 1997, **36**, 6409-6412.
- 5. P. Millet, R. Enjalbert, J. Galy, J. Solid State Chem., 1999, 147, 296-303.
- 6. P. Millet, J. Galy, M. Johnsson, *Solid state sci.*, 1999, **1**, 279-286.
- 7. O. Tougait, J. A. Ibers, J. Solid State Chem., 2000, 154, 564-568.
- 8. A. Tyutyunnik, V. Krasil'nikov, V. Zubkov, L. Perelyaeva, I. Baklanova, *Russ. J. Inorg. Chem.*, 2010, **55**, 501-507.
- 9. P. X. Li, F. Kong, C. L. Hu, N. Zhao, J. G. Mao, *Inorg. Chem.*, 2010, **49**, 5943-5952.
- 10. Y. H. Kim, D. W. Lee, K. M. Ok, *Inorg. Chem.*, 2013, **52**, 11450-11456.
- S.-Y. Zhang, C. L. Hu, C. F. Sun, J. G. Mao, *Inorg. Chem.*, 2010, 49, 11627-11636.
- 12. J. Yeon, S. H. Kim, S. D. Nguyen, H. Lee, P. S. Halasyamani, *Inorg. Chem.*, 2012, **51**, 609-619.
- 13. V. M. Kovrugin, M. Colmont, O. I. Siidra, S. V. Krivovichev, O. Mentre, *Cryst Growth Des.*, 2016, **16**, 3113-3123.
- 14. G. Meunier, M. Bertaud, J. Galy, *Acta Crystallogr. Sect. B.*, 1974, **30**, 2834-2839.
- 15. J.-C. Trombe, A. Gleizes, J. Galy, J. P. Renard, Y. Journaux, M. Verdaguer, *New J. Chem.*, 1987, **11**, 321-328.
- 16. K. S. Lee, Y. U. Kwon, H. Namgung and S. H. Kim, *Inorg. Chem.*, 1995, **34**, 4178-4181.
- 17. 김윤현, 권영욱, 이규석, B Korean Chem Soc., 1996, 17, 1123-1127.
- T. Sivakumar, H. Y. Chang, J. Baek, P. S. Halasyamani, *Chem. Mater.*, 2007, 19, 4710-4715.
- 19. T. Eaton, J. Lin, J. N. Cross, J. T. Stritzinger, T. E. Albrecht Schmitt, *Chem Commun.*, 2014, **50**, 3668-3670.
- 20. S. Peschke, L. Gamperl, V. Weippert and D. Johrendt, *Dalton Trans.*, 2017, **46**, 6230-6243.
- 21. H. L. Jiang, F. Kong, Y. Fan and J. G. Mao, *Inorg. Chem.*, 2008, **47**, 7430-7437.
- 22. D. W. Lee, S. J. Oh, P. S. Halasyamani and K. M. Ok, *Inorg. Chem.*, 2011, **50**, 4473-4480.
- 23. F. Rabbani, I. Zimmermann, M. Johnsson, Acta Crystallogr. Sect., 2012, 68, i61-i61.
- 24. P.-X. Li, S. Y. Zhang, J. G. Mao, *Dalton Trans.*, 2010, **39**, 11560-11567.
- 25. H. G. Wang, J. H. Zhang, M. S. Lin, T. Y. Wang, Z. J. Zhang, S. Yan, S. M. Ying, *J Solid State Chem.*, 2022, **308**, 122928.
- 26. J. T. Vaughey, W. T. Harrison, L. L. Dussack and A. J. Jacobson, *Inorg. Chem.*, 1994, **33**, 4370-4375.

- 27. W. T. Harrison, L. Dussack and A. Jacobson, Acta Crystallogr. Sect., 1995, 51.
- H. Y. Chang, S.-H. Kim, K. M. Ok, P. S. Halasyamani, *Chem. Mater.*, 2009, 21, 1654-1662.
- 29. W. T. Harrison, Acta Crystallogr. Sect., 2000, 56, iuc0000228-e0000422.
- 30. Y. H. Kim, D. W. Lee, K. M. Ok, Inorg. Chem., 2014, 53, 1250-1256.
- 31. D. Pitzschke, M. Jansen, Z. Anorg. Allg. Chem., 2007, 633, 1563-1567.