Construction of bimetallic phosphides nanostructures with in-situ growth, reduction, and phosphidation of ultra-thin graphene layers as highly efficient catalysts towards electrocatalytic oxygen evolution

Dengxia Zhu, Huiting Bi*, Chaolong Wang, Zheng Zhang, Junjiang Zhu*

Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, PR China

Fig. S1. TEM images of rGO@FeNiSiOx and rGO@FeNi.

Fig. S2. XRD patterns of $rGO@FeCoSiO_x$, rGO@FeCo, rGO@FeCoP.

Fig. S3. XRD of catalysts calcined under N₂-H₂ and N₂ atmosphere.

Fig. S4. XPS spectra of rGO@FeCoP (A) survey spectra. (B) Fe 2p. (C) Co 2p. (D) P 2p spectra.

Fig. S5. N_2 adsorption-desorption isotherms of rGO@FeCoSiO_x, rGO@FeCo, rGO@FeCoP.

Fig. S6. (A-C) CV curves at different scan rates: 20, 40, 60, 80, 100, and 120 mV s⁻¹ from inside to outside.

Fig. S7. (A-D) CV curves at different scan rates: 20, 40, 60, 80, 100, and 120 mV s⁻¹ from inside to outside.

Fig. S8. OER electrocatalytic performance of $rGO@FeCoSiO_x$, rGO@FeCo, rGO@FeCoP. (A) Polarization curves in 1.0 M KOH at a scan rate of 5 mV s⁻¹. (B) Comparison of the overpotentials at the current density of 10 mA cm⁻². (C) Corresponding Tafel plots. (D-F) CV curves at different scan rates: 20, 40, 60, 80, 100, and 120 mV s⁻¹ from inside to outside. (G) CV current density versus scan Rate. (H) Nyquist plots. (I) Chronopotentiometry curves of rGO@FeCoP at 1.54 V vs. RHE.

Fig. S9. Polarization curves of $rGO@Fe_{0.8}NiP$ and rGO in 1.0 M KOH at a scan rate of 5 mV s⁻¹.

Fig. S10. TEM images (A) and HRTEM images (B) of rGO@FeNiP(recycled), (C) STEM image and EDS elemental mapping of rGO@FeNiP(recycled).

Table S1. OER activity comparison for the samples tested in this work with recently reported catalysts in 1 M KOH.

materials	Electrolyte	overpotential	refs
	(M, KOH)	(mV) at 10	
		mA/cm ²	
rGO@Fe _{0.8} Ni-P	1	266	this work
rGO@FeCo-P	1	311	this work
rGO/Co-P	1	333	1
CoPNR/C	1	320	2
Ni ₂ P@C	1	495	3
FeNiP / NC	1	310	4
NiFeP@NPC	1	350	5
$(Co_{0.54}Fe_{0.46})P_2$	1	370	6
$C - (Co_{0.54}Fe_{0.46})_2P$	0.1	371	7

Table S2. R_{ct} estimated by fitting the equivalent circuit against the EIS data.

materials	$R_{ct}(\Omega)$
rGO@FeNiSiO _x	249.1
rGO@FeNi	50.7
rGO@Fe _{0.8} NiP	8.6
rGO@Fe _{0.3} NiP	18.1
rGO@Fe _{0.6} NiP	15.5
rGO@Fe _{1.1} NiP	15.8

References

- 1 P. Li, H. C. Zeng, ACS Appl. Mater. Interfaces., 2019, 11, 46825-46838.
- 2 J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu and W. Xing, ACS Catal., 2015, 5, 6874-6878.
- 3 Q. Kang, M. Li, J. Shi, Q. Lu and F. Gao, ACS Appl. Mater. Interfaces., 2020, 12, 19447-19456.
- 4 Y. Du, Y. Han, X. Huai, Y. Liu, C. Wu, Y. Yang and L. Wang, *Int. J. Hydrogen Energy*, 2018, **43**, 22226-22234.

- 5 F. C. Jian Wang, Appl. Catal., B, 2019, 254, 292-299.
- 6 A. Mendoza-Garcia, H. Zhu, Y. Yu, Q. Li, L. Zhou, D. Su, M. J. Kramer and S. Sun, *Angewandte Chemie International Edition*, 2015, **54**, 9642-9645.
- 7 A. Mendoza-Garcia, D. Su and S. Sun, Nanoscale, 2016, 8, 3244-3247.