Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Fabrication of PdCu@SiO₂@Cu core-shell-satellite catalyst for the selective

hydrogenation of acetylene

Shuang Liu, Shaobo Han, Yong Li and Wenjie Shen*

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of

Sciences, Dalian 116023, China

* e-mail: shen98@dicp.ac.cn

Sample	Core size (nm)	Satellite size (nm)	Shell thickness (nm)	Ref.	
Ag@SiO ₂ @TiO ₂ @Au	30-60	11 imes 40	10-15	1	
Ag@SiO ₂ @CeO ₂ @Au	30	2-10	15-20	2	
Au@SiO ₂ @AgPt	18 × 61 2-5		2-3	3	
Ag@SiO ₂ @Ag	60-80	60-80 5 35-45		4	
Ni@SiO ₂ @Ni	11.7	3-7	11.2	5	
Ag@SiO ₂ @Pt	12/25/50/100	5	8-10	6	
Au@pNIPAM@Ag	50	6/10/14/34	~140	7	
Ag@RF@Ag	45	~3-8	30	8	
	40	8	100		
AuAg@pNIPAM@Ag	64	15	~140	9	
PdCu@SiO ₂ @Cu	7	1.4	8	This work	

 Table s1. Structure of the typical core-shell-satellite architectures.

Figure s1. TEM/STEM images and particle size distributions of the as-synthesized Pd₂₅Cu₇₅@SiO₂

core-shell (a-c) and PdCu@SiO₂@Cu core-shell-satellite (d, e) architectures.

Figure s2. XRD patterns of the as-calcined Pd₂₅Cu₇₅@SiO₂ and PdCu@SiO₂@Cu samples.

Figure s3. Semi-quantitative analysis of the core-shell-satellite catalyst by EDS.

Figure s4. XRD patterns of the spent catalysts.

Figure s5. HRTEM/STEM images and particle size distributions of the spent $Pd_{25}Cu_{75}@SiO_2$ coreshell (**a-d**) and PdCu@SiO_2@Cu core-shell-satellite (**e-h**) catalysts.

Catalyst (wt.)	Temp . (K)	Feed gas (vol.%)	Conv. (%)	Ethylene Sel. (%)	Ref.
0.11%Pd1/ND@G	453	1%C ₂ H ₂ /10%H ₂ /20%C ₂ H ₄ /He	100	>90	10
1.8%Pd ₁ /C ₃ N ₄	388	$0.5\%C_2H_2/1\%H_2/20\%C_2H_4/Ar$	100	83	11
1.0%Pd/ZnO	423	2% C ₂ H ₂ /20%H ₂ /He	100	91	12
0.043%Pd ₁ /MPNC	383	0.5%C ₂ H ₂ /5%H ₂ /50%C ₂ H ₄ /He	85	83	13
2.0%Pd/MgAl ₂ O ₄	363	0.5%/5%H ₂ /50%C ₂ H ₄ /He	100	15	14
1.29%PdCu/TiO ₂	373	1.5%C ₂ H ₂ /1.7%H ₂ /C ₂ H ₄	98	78	15
$0.05\% Pd_{0.006}Cu/SiO_2$	443	1%C ₂ H ₂ /20%H ₂ /20%C ₂ H ₄ /He	100	85	16
1.0%PdCu/Al ₂ O ₃	363	0.5%C ₂ H ₂ /3%/H ₂ /Ar	100	95.2	17
0.2%Pd ₁ /Cu(111)	393	$1\%C_2H_2/20\%H_2/20\%C_2H_4/N_2$	100	85	18
0.058%PdCu ₄₀ /SiO ₂	433	1%C ₂ H ₂ /20%H ₂ /20%C ₂ H ₄ /He	100	85	19
PdCu ₁₅ @C	393	0.5%C ₂ H ₂ /10%H ₂ /N ₂	100	91	20
0.09%Pd ₁ Cu ₁ /ND@G	383	1%C ₂ H ₂ /10%H ₂ /20%C ₂ H ₄ /He	100	92	21
9.5 wt.%PdCu@SiO₂@Cu	373	1 vol.% C ₂ H ₂ , 2 vol.% H ₂ , He	72	89	This work

Table s2. Acetylene hydrogenation over Pd and PdCu catalysts.

Reference

- M. Liu, X. Jin, S. Li, J.-B. Billeau, T. Peng, H. Li, L. Zhao, Z. Zhang, J. P. Claverie, L. Razzari and J. Zhang, ACS Appl. Mater. Interfaces, 2021, 13, 34714–34723.
- 2. J. Gu, H. Liu, T. Peng, S. Li, L. Xu, J. Zhang and L. Zhang, *ACS Appl. Nano Mater.*, 2022, **5**, 4972–4982.
- 3. H. Jia, L. Qiu and J. Wang, *RSC Adv.*, 2015, **5**, 40316–40323.
- Y. Mao, W. Jiang, S. Wang, M. Liu, S. Xuan, X. Gong and K. C.-F. Leung, J. Alloys Compd., 2016, 680, 406–414.
- 5. Z. Li, L. Mo, Y. Kathiraser and S. Kawi, ACS Catal., 2014, 4, 1526–1536.
- K. Li, N. J. Hogan, M. J. Kale, N. J. Halas, P. Nordlander and P. Christopher, *Nano Lett.*, 2017, 17, 3710–3717.
- C. Alarcón-Fernández, M. Doña, A. Tapia-Fernández, G. Villaverde, M. R. Lopez-Ramirez, J. M. López-Romero and R. Contreras-Caceres, ACS Appl. Nano Mater., 2020, 3, 8247–8256.
- P. Yang, Y. Xu, L. Chen, X. Wang, B. Mao, Z. Me, S. Wang, F. Bao and Q. Zhang, *Nano Lett.*, 2015, 15, 8397–8401.
- 9. L. Tzounis, M. Doña, J. M. Lopez-Romero, A. Fery and R. Contreras-Caceres, *ACS Appl. Mater. Interfaces*, 2019, **11**, 29360–29372.

- F. Huang, Y. Deng, Y. Chen, X. Cai, M. Peng, Z. Jia, P. Ren, D. Xiao, X. Wen, N. Wang, H. Liu and
 D. Ma, J. Am. Chem. Soc., 2018, 140, 13142–13146.
- 11. X. Huang, Y. Xia, Y. Cao, X. Zheng, H. Pan, J. Zhu, C. Ma, H. Wang, J. Li, R. You, S. Wei, W. Huang and J. Lu, *Nano Res.*, 2017, **10**, 1302–1312.
- 12. H. Zhou, X. Yang, L. Li, X. Liu, Y. Huang, X. Pan, A. Wang, J. Li and T. Zhang, *ACS Catal.*, 2016, **6**, 1054–1061.
- 13. Q. Feng, S. Zhao, Q. Xu, W. Chen, S. Tian, Y. Wang, W. Yan, J. Luo, D. Wang and Y. Li, *Adv. Mater.*, 2019, **31**, 1901024.
- Q. Feng, S. Zhao, Y. Wang, J. Dong, W. Chen, D. He, D. Wang, J. Yang, Y. Zhu, H. Zhu, L. Gu, Z. Li,
 Y. Liu, R. Yu, J. Li and Y. Li, *J. Am. Chem. Soc.*, 2017, **139**, 7294–7301.
- 15. B. Pongthawornsakun, N. Wimonsupakit and J. Panpranot, J. Chem. Sci., 2017, **129**, 1721–1734.
- G. X. Pei, X. Y. Liu, X. Yang, L. Zhang, A. Wang, L. Li, H. Wang, X. Wang and T. Zhang, ACS Catal., 2017, 7, 1491–1500.
- Q. Gao, Z. Yan, W. Zhang, H. S. Pillai, B. Yao, W. Zang, Y. Liu, X. Han, B. Min, H. Zhou, L. Ma, B.
 Anaclet, S. Zhang, H. Xin, Q. He and H. Zhu, *J. Am. Chem. Soc.*, 2023, **145**, 19961–19968.
- L. Jiang, K. Liu, S. -F. Hung, L. Zhou, R. Qin, Q. Zhang, P. Liu, L. Gu, H. Chen, G. Fu and N. Zheng, *Nat. Nanotechnol.*, 2020, **15**, 848–853.
- 19. G. Pei, X. Liu, M. Chai, A. Wang and T. Zhang, *Chin. J. Catal.*, 2017, **38**, 1540–1548.
- C. Lu, S. Zhou, W. Zhou, C. Zhou, Q. Li, A. Zeng, A. Wang, L. Tan and L. Dong, *Chem. Eng. J.*, 2023,
 464, 142609.
- 21. F. Huang, M. Peng, Y. Chen, X. Cai, X. Qin, N. Wang, D. Xiao, L. Jin, G. Wang, X.-D. Wen, H. Liu and D. Ma, *J. Am. Chem. Soc.*, 2022, **144**, 18485–18493.