Supporting Information

Fe₂P nanoparticles-decorated carbon nanofiber composite towards lightweight and highly-efficient microwave absorption

Yao Li^a, Guangguang Guan^a, Liang Yan^a, Kaiyin Zhang^b and Jun Xiang^{*a}

^a School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China

^b College of mechanical and electrical engineering, Wuyi University, Wuyishan 354300, PR China

*Corresponding author.

E-mail address: jxiang@just.edu.cn (J. Xiang)

Experimental section

1. Materials

Polyacrylonitrile (PAN, Mw = 150,000), N.N-Dimethylformamide (DMF), ferric acetylacetonate (Fe(acac)₃), and phosphornitrilic chloride trimer (Cl₆N₃P₃) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. All the materials were used directly without further purification.

2. Characterization

Phase structure of Fe₂P@CNFs and CNFs were analyzed by X-ray diffractometer (XRD, Shimadzu XRD-6000) with Cu K α radiation ($\lambda = 0.15406$ nm). Raman spectra were recorded on a Renishaw in Via Reflex Raman spectrometer with a 532 nm laser. The surface morphology and microstructure of the samples were observed through field-emission scanning electron microscopy (FE-SEM, Zeiss Merlin Compact) and transmission electron microscope (TEM, FEI Tecnai F20 G2). Thermogravimetric (TG) analysis was conducted on a Shimadzu DTG-60H thermal analyzer from room temperature to 800 °C with a heating rate of 10 °C/min in air atmosphere.

3. Electromagnetic measurement

To investigate the electromagnetic characteristics and microwave absorption properties, the prepared products were uniformly mixed with paraffin wax at a mass ratio of 1:9 (10 wt%), and then pressed into toroidal-shaped specimens with an outer diameter of 7.00 mm, an inner diameter of 3.04 mm, and a thickness of 2–3 mm. The vector network analyzer (Agilent PAN N5224A) was employed to measure the electromagnetic parameters in the frequency range of 2–18 GHz based on a coaxial transmission/reflection mode. To reveal the effect of the filling ratio on the EM and MA performances,

the composites with 7.5 wt% and 12.5 wt% Fe_2P@CNFs were also prepared.

Fig. S1 TG curve of Fe₂P@CNFs.

Fig. S2 Diameter distribution diagrams of (a) CNFs and (b) Fe₂P@CNFs.

Fig. S3 HAADF-STEM image and corresponding elemental mappings of Fe₂P@CNFs

Fig. S4 Frequency dependence of relative complex permeability for (a) CNFs and (b) Fe₂P@CNFs.

Fig. S5 Magnetic loss tangents of CNFs and Fe₂P@CNFs.

Fig. S6 2D contour maps of $|Z_{in}/Z_0|$ of (a) CNFs and (b) Fe₂P@CNFs.

Fig. S7 RL curves at some specific thicknesses for the $Fe_2P@CNFs/paraffin$ composites with filler loadings of (a) 7.5 wt% and (b) 12.5 wt%.

Fig. S8 Frequency dependence of (a) attenuation constant α and (b) impedance matching ratio $|Z_{in}/Z_0|$ of the Fe₂P@CNFs composites with different filler loadings (7.5, 10, and 12.5 wt%).

Sample	Loading (wt%)	$RL_{min}(dB)$	EAB (GHz)	Ref.
Ni ₂ P/rGO	30	-38.3	3.8	[30]
NiCoP/rGO	50	-20.6	4.1	[14]
Ni/NiP@NC	40	-56.1	4.3	[31]
Ni _{1-x} Co _x P/MWNTs	25	-26.8	2.2	[32]
Ni-Co-P	40	-41.7	2.2	[33]
Ni ₁₂ P ₅ /Ni ₂ P	35	-50.06	3.3	[34]
Co ₂ P	60	-39.5	2.4	[13]
FeP	60	-37.7	2.8	[35]
Fe ₂ P@CNFs	10	-49.2	6.0	This work

Table. S1 Microwave absorption properties of some representative transition metal phosphides and their composites.

Table. S2 Microwave absorption properties of some representative iron-based materials.

Sample	Loading (wt%)	$RL_{min}(dB)$	EAB (GHz)	Ref.
γ-Fe ₂ O ₃ @N-RGO	30	-41.1	3.4	[1]
RGO/γ-Fe ₂ O ₃ @C	20	-32.4	3.0	[2]
γ -Fe ₂ O ₃ @porous-RGO	17	-34.2	4.5	[3]
Fe-N@SiO ₂	50	-23.1	2.4	[4]
$Fe_{70}Si_{30}$	75	-16.5	-	[5]
Fe/TiO ₂ nanowire arrays	80	-28.36	1.36	[6]
FeCo@SiO ₂ @TiO ₂	70	-33.72	5.8	[7]
Fe ₂ P@CNFs	10	-49.2	6.0	This work

References

1 J. Wang, J. Ren, Q. Li, Y. Liu, Q. Zhang and B. Zhang, *Carbon*, 2021, **184**, 195-206.

2 S. Ouyang, H. Fu, Y. Xie, W. He and Y. Ling, *Journal of Alloys and Compounds*, 2022, **920**, 166015.

S. Wang, Q. Jiao, X. Liu, Y. Xu, Q. Shi, S. Yue, Y. Zhao, H. Liu, C. Feng and D. Shi, *ACS Sustainable Chemistry & Engineering*, 2019, **7**, 7004-7013.

4 X. Kou, Y. Zhao, L. Xu, Z. Kang, Y. Wang, Z. Zou, P. Huang, Q. Wang, G. Su, Y. Yang and Y. Sun, *Journal of Colloid and Interface Science*, 2022, **615**, 685-696.

5 G. Xie, L. Yuan, P. Wang, B. Zhang, P. Lin and H. Lu, *Journal of Non-Crystalline Solids*, 2010, **356**, 83-86.

6 Y. Zhu, X. Li, P. Chen and B. Zhu, *Ceramics International*, 2020, **46**, 23985-23996.

7 Y. Li, H. Cheng, N. Wang, S. Zhou, D. Xie, T. Li, J. Magn. Magn. Mater, 2019, 471, 346–354.