Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

ELECTRONIC SUPPLEMENTARY INFORMATION

for

Coupling Between two Ru(bda) Catalysts Bridged by a *trans*-dicyano Complex

Pedro O. Abate,^{a,b} Virginia M. Juárez,^{a,b} and Luis M. Baraldo^{a,b}

^a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.

^b CONICET – Universidad de Buenos Aires. Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.

Table of contents

Figure S2 3 Figure S3 4 Figure S4 5 Figure S5 6 Figure S6 7 Figure S7 8 Figure S8 9 Figure S9 10 Figure S10 11 Figure S11 11 Figure S12 12 Figure S13 13 Figure S14 14 Figure S15 14 Figure S16 15 Figure S17 15 Figure S18 15 Figure S19 16 Figure S20 16 Figure S21 16 Figure S23 17 Table S1 17 Figure S23 19 Table S3 19 Table S4 20 Figure S25 21 Table S5 21 Figure S26 23 Table S6 22 Table S8 24 Figure S27 24 Table S9 25 Figure S28 25	Figure S1
Figure S3 4 Figure S4 5 Figure S5 6 Figure S6 7 Figure S7 8 Figure S8 9 Figure S9 10 Figure S10 11 Figure S11 11 Figure S12 12 Figure S13 13 Figure S14 14 Figure S15 14 Figure S16 15 Figure S18 15 Figure S19 16 Figure S20 16 Figure S21 17 Table S1 17 Figure S23 19 Table S3 19 Table S4 20 Figure S25 21 Figure S26 23 Figure S25 21 Figure S26 23 Figure S27 24 Table S8 24 Figure S28 25 Figure S28 25 Figure S28 25 Figure S26 23 Figure S27	Figure S2
Figure S4 5 Figure S5 6 Figure S6 7 Figure S7 8 Figure S8 9 Figure S10 10 Figure S11 11 Figure S12 12 Figure S13 13 Figure S14 14 Figure S15 14 Figure S16 15 Figure S18 15 Figure S19 16 Figure S20 16 Figure S21 17 Table S1 17 Figure S23 19 Table S3 19 Table S4 20 Figure S25 21 Figure S26 23 Table S5 21 Figure S26 23 Figure S27 24 Table S8 24 Figure S27 24 Table S1 25 Figure S28 25 Figure S28 25 Figure S28 25 Figure S27 24 Figure S28	Figure S3 4
Figure S5 6 Figure S6 7 Figure S7 8 Figure S8 9 Figure S10 10 Figure S11 11 Figure S12 12 Figure S13 13 Figure S14 14 Figure S15 14 Figure S16 15 Figure S17 15 Figure S18 15 Figure S19 16 Figure S20 16 Figure S21 16 Figure S22 17 Table S1 17 Figure S23 19 Table S2 18 Figure S23 19 Table S3 19 Table S4 20 Figure S25 21 Figure S25 21 Table S6 22 Table S7 23 Figure S26 23 Table S8 24 Figure S27 24 Table S9 25 Figure S27 24 Table S9 <td< td=""><td>Figure S4 5</td></td<>	Figure S4 5
Figure S6 7 Figure S7 8 Figure S8 9 Figure S10 10 Figure S11 11 Figure S12 12 Figure S13 13 Figure S14 14 Figure S15 14 Figure S16 15 Figure S17 15 Figure S18 15 Figure S19 16 Figure S20 16 Figure S21 16 Figure S22 17 Table S1 17 Figure S23 19 Table S2 18 Figure S23 19 Table S4 20 Figure S25 21 Table S5 21 Figure S25 21 Table S6 22 Table S7 23 Figure S26 23 Table S8 24 Figure S27 24 Table S9 25 Figure S28 25 Figure S27 24 Table S9 <	Figure S5 6
Figure S7 8 Figure S8 9 Figure S10 10 Figure S11 11 Figure S12 12 Figure S13 13 Figure S14 14 Figure S15 14 Figure S16 15 Figure S17 15 Figure S18 15 Figure S19 16 Figure S20 16 Figure S21 16 Figure S22 17 Table S1 17 Figure S23 19 Table S3 19 Table S4 20 Figure S25 21 Figure S26 23 Table S6 22 Table S7 23 Figure S26 23 Table S8 24 Figure S27 24 Table S9 25 Figure S28	Figure S6 7
Figure S8 9 Figure S9 10 Figure S10 11 Figure S11 11 Figure S12 12 Figure S13 13 Figure S14 14 Figure S15 14 Figure S16 15 Figure S17 15 Figure S18 15 Figure S19 16 Figure S20 16 Figure S21 16 Table S1 17 Figure S22 17 Table S1 17 Figure S23 19 Table S3 19 Table S4 20 Figure S25 21 Figure S25 21 Figure S26 23 Table S6 22 Table S7 23 Figure S26 23 Table S8 24 Figure S27 24 Table S9 25 Figure S28 25 Figure S28 25 Figure S28 25 Figure S28	Figure S7
Figure S9 10 Figure S10 11 Figure S11 11 Figure S12 12 Figure S13 13 Figure S13 13 Figure S14 14 Figure S15 14 Figure S16 15 Figure S17 15 Figure S18 15 Figure S19 16 Figure S20 16 Figure S21 16 Figure S22 17 Table S1 17 Figure S23 19 Table S2 18 Figure S23 19 Table S4 20 Figure S25 21 Figure S25 21 Figure S25 21 Table S6 22 Table S7 23 Figure S26 23 Table S8 24 Figure S27 24 Table S9 25 Figure S28 25 Figure S28 25 Figure S28 25 Figure S29 <td>Figure S8</td>	Figure S8
Figure S10 11 Figure S11 11 Figure S12 12 Figure S13 13 Figure S14 14 Figure S15 14 Figure S16 15 Figure S17 15 Figure S18 15 Figure S19 16 Figure S20 16 Figure S21 16 Table S1 17 Figure S22 17 Table S1 17 Figure S23 19 Table S2 17 Table S3 19 Table S4 20 Figure S25 21 Figure S25 21 Figure S26 23 Table S6 22 Table S7 23 Figure S26 23 Table S8 24 Figure S27 24 Table S9 25 Figure S28 25 Figure S28 25 Figure S29 26 Figure S29 26 Figure S30	Figure S9 10
Figure S11 11 Figure S12 12 Figure S13 13 Figure S14 14 Figure S15 14 Figure S16 15 Figure S17 15 Figure S18 15 Figure S19 16 Figure S20 16 Figure S21 16 Table S1 17 Figure S22 17 Table S2 18 Figure S23 19 Table S3 19 Table S4 20 Figure S25 21 Figure S26 23 Table S7 23 Figure S26 23 Table S8 24 Figure S27 24 Table S9 25 Figure S28 25 Figure S28 25 Figure S28 25 Figure S28 25 Figure S29 26 Figure S30 27	Figure S10 11
Figure \$12 12 Figure \$13 13 Figure \$14 14 Figure \$15 14 Figure \$16 15 Figure \$17 15 Figure \$18 15 Figure \$19 16 Figure \$20 16 Figure \$21 16 Table \$1 17 Figure \$22 17 Table \$2 18 Figure \$23 19 Table \$2 18 Figure \$24 20 Figure \$25 21 Table \$6 22 Table \$7 23 Figure \$26 23 Table \$8 24 Figure \$27 24 Table \$9 25 Figure \$28 25 Figure \$29 26 Figure \$29 <td>Figure S11 11</td>	Figure S11 11
Figure S13 13 Figure S14 14 Figure S15 14 Figure S16 15 Figure S17 15 Figure S18 15 Figure S19 16 Figure S20 16 Figure S21 16 Table S1 17 Figure S22 17 Table S2 18 Figure S23 19 Table S2 17 Table S2 17 Table S2 17 Figure S23 19 Table S2 17 Table S2 18 Figure S23 19 Table S3 19 Table S4 20 Figure S24 20 Table S5 21 Figure S25 21 Table S6 22 Table S7 23 Figure S26 23 Table S8 24 Figure S27 24 Table S9 25 Figure S28 25 Table S10 26	Figure S12 12
Figure S14 14 Figure S15. 14 Figure S16. 15 Figure S17. 15 Figure S18. 15 Figure S19. 16 Figure S20 16 Figure S21. 16 Table S1. 17 Figure S22. 17 Table S2. 18 Figure S23. 19 Table S3. 19 Table S4. 20 Figure S24. 20 Table S5. 21 Figure S25. 21 Figure S26. 23 Table S6. 22 Table S7. 23 Figure S26. 23 Table S8. 24 Figure S27. 24 Table S8. 25 Figure S27. 24 Table S9. 25 Figure S28. 25 Table S10. 26 Figure S28. 25 Table S10. 26 Figure S29. 26 Table S11. 27	Figure S13 13
Figure S15. 14 Figure S16. 15 Figure S17. 15 Figure S18. 15 Figure S19. 16 Figure S20 16 Figure S21. 16 Table S1. 17 Figure S22. 17 Table S2. 18 Figure S23. 19 Table S3. 19 Table S4. 20 Figure S24. 20 Figure S25. 21 Figure S25. 21 Figure S26. 22 Table S6. 22 Table S7. 23 Figure S26. 23 Table S8. 24 Figure S27. 24 Table S9. 25 Figure S27. 24 Table S9. 25 Figure S28. 25 Table S10. 26 Figure S29. 26 Table S11. 27 Figure S30. 27	Figure S14 14
Figure S16. 15 Figure S17. 15 Figure S18. 15 Figure S19. 16 Figure S20 16 Figure S21. 16 Table S1. 17 Figure S22. 17 Table S2. 18 Figure S23. 19 Table S3. 19 Table S4. 20 Figure S24. 20 Figure S25. 21 Figure S25. 21 Figure S26. 23 Table S7. 23 Figure S26. 23 Table S8. 24 Figure S27. 24 Table S9. 25 Figure S28. 25 Table S10. 26 Figure S29. 26 Table S11. 27 Figure S30. 27	Figure S15 14
Figure S17. 15 Figure S18. 15 Figure S19. 16 Figure S20 16 Figure S21 16 Table S1. 17 Figure S22. 17 Table S2. 18 Figure S23. 19 Table S3. 19 Table S4. 20 Figure S24. 20 Table S5. 21 Figure S25. 21 Table S6. 22 Table S7. 23 Figure S25. 21 Table S6. 22 Table S6. 22 Table S7. 23 Figure S26. 23 Table S8. 24 Figure S27. 24 Table S9. 25 Figure S2	Figure S16 15
Figure S18. 15 Figure S19. 16 Figure S20 16 Figure S21 16 Table S1. 17 Figure S22. 17 Table S2. 18 Figure S23. 19 Table S3. 19 Table S4. 20 Figure S24. 20 Table S5. 21 Figure S25. 21 Table S6. 22 Table S7. 23 Figure S25. 21 Table S6. 22 Table S7. 23 Figure S26. 23 Table S7. 23 Figure S26. 23 Table S8. 24 Figure S27. 24 Table S9. 25 Figure S28. 25 Table S10. 26 Figure	Figure S17 15
Figure S19. 16 Figure S20 16 Figure S21 16 Table S1. 17 Figure S22. 17 Table S2. 18 Figure S23. 19 Table S3. 19 Table S4. 20 Figure S24. 20 Figure S25. 21 Table S6. 22 Table S7. 23 Figure S26. 23 Table S8. 24 Figure S27. 24 Table S9. 25 Figure S28. 25 Table S10. 26 Figure S29. 26 Table S11. 27 Figure S30. 27	Figure S18 15
Figure S20 16 Figure S21 16 Table S1 17 Figure S22 17 Table S2 18 Figure S23 19 Table S3 19 Table S4 20 Figure S24 20 Figure S25 21 Table S6 22 Table S6 22 Table S7 23 Figure S26 23 Table S8 24 Figure S27 24 Table S9 25 Figure S28 25 Table S10 26 Figure S29 26 Table S11 27 Figure S30 27	Figure S19 16
Figure S21 16 Table S1 17 Figure S22 17 Table S2 18 Figure S23 19 Table S3 19 Table S4 20 Figure S24 20 Table S5 21 Figure S25 21 Figure S25 21 Table S6 22 Table S6 22 Table S7 23 Figure S26 23 Table S8 24 Figure S27 24 Table S9 25 Figure S28 25 Figure S29 26 Table S11 27 Figure S30 27	Figure S20 16
Table S1	Figure S21 16
Figure S22. 17 Table S2. 18 Figure S23. 19 Table S3. 19 Table S4. 20 Figure S24. 20 Table S5. 21 Figure S25. 21 Table S6. 22 Table S6. 22 Table S7. 23 Figure S26. 23 Table S8. 24 Figure S27. 24 Table S9. 25 Figure S28. 25 Table S10. 26 Figure S29. 26 Table S11. 27 Figure S30. 27	Table S1 17
Table S2 18 Figure S23. 19 Table S3 19 Table S4 20 Figure S24. 20 Table S5 21 Figure S25. 21 Table S6 22 Table S6 22 Table S6 23 Figure S26. 23 Figure S26. 23 Table S8 24 Figure S27 24 Table S9 25 Figure S28. 25 Table S10. 26 Figure S29. 26 Table S11. 27 Figure S30. 27	Figure S22 17
Figure S23. 19 Table S3. 19 Table S4. 20 Figure S24. 20 Table S5. 21 Figure S25. 21 Table S6. 22 Table S7. 23 Figure S26. 23 Table S8. 24 Figure S27. 24 Figure S27. 24 Figure S28. 25 Figure S28. 25 Table S10. 26 Figure S29. 26 Table S11. 27 Figure S30. 27	Table S2
Table S3. 19 Table S4. 20 Figure S24. 20 Table S5. 21 Figure S25. 21 Table S6. 22 Table S7. 23 Figure S26. 23 Table S8. 24 Figure S27. 24 Table S9. 25 Figure S28. 25 Table S10. 26 Figure S29. 26 Table S11. 27 Figure S30. 27	Figure S23 19
Table S4. 20 Figure S24. 20 Table S5. 21 Figure S25. 21 Table S6. 22 Table S6. 22 Table S7. 23 Figure S26. 23 Table S8. 24 Figure S27. 24 Table S9. 25 Figure S28. 25 Table S10. 26 Figure S29. 26 Table S11. 27 Figure S30. 27	Table S3 19
Figure S24. 20 Table S5. 21 Figure S25. 21 Table S6. 22 Table S7. 23 Figure S26. 23 Table S8. 24 Figure S27. 24 Table S9. 25 Figure S28. 25 Table S10. 26 Figure S29. 26 Table S11. 27 Figure S30. 27	Table S4 20
Table S5	Figure S24 20
Figure S25. 21 Table S6. 22 Table S7. 23 Figure S26. 23 Table S8. 24 Figure S27. 24 Table S9. 25 Figure S28. 25 Table S10. 26 Figure S29. 26 Table S11. 27 Figure S30. 27	Table S5 21
Table S6	Figure S25 21
Table S7	Table S6
Figure S26. 23 Table S8. 24 Figure S27 24 Table S9. 25 Figure S28. 25 Table S10. 26 Figure S29. 26 Table S11. 27 Figure S30. 27	Table S7 23
Table S8	Figure S26 23
Figure S27 24 Table S9 25 Figure S28 25 Table S10 26 Figure S29 26 Table S11 27 Figure S30 27	Table S8 24
Table S9	Figure S27 24
Figure S28. 25 Table S10. 26 Figure S29. 26 Table S11. 27 Figure S30. 27	Table S9 25
Table S10	Figure S28 25
Figure S29. 26 Table S11. 27 Figure S30. 27	Table \$10
Table S11	Figure S29 26
Figure \$30 27	Table S11 27
	Figure \$30 27

Table S12	
Figure S31	
Table S13	
Figure S32	
Figure S33	
Table S13	
Table S14	
Figure S34	
Table S15	
Figure S35	
Figure S36	
Table S16	
Figure S37	

Fig. S1 500 MHz ¹H-NMR spectrum of *trans*-Ru(tbupy)₄(CN)₂ dissolved in (CD₃)₂CO.

Fig. S2 125 MHz ¹³C-NMR spectrum of *trans*-Ru(tbupy)₄(CN)₂ dissolved in (CD₃)₂CO.

Fig. S3 2D ¹H-¹³C HSQC spectrum of *trans*-Ru(tbupy)₄(CN)₂ dissolved in (CD₃)₂CO.

Fig. S4 500 MHz ¹H-NMR spectrum of [RuRu(tbupy)₄Ru] dissolved in CD₃OD.

Fig. S5 ¹H-DOSY spectrum of [RuRu(tbupy)₄Ru] in CDCl₃ at 298K. The diffusion coefficient is 5.31*10⁻⁶ cm²/s.

Fig. S6 500 MHz ¹H-NMR spectrum of **[RuRu(py)**₄**Ru]** dissolved in D₂O.

Fig. S7 2D ¹H-¹H COSY spectrum of **[RuRu(py)**₄**Ru]** dissolved in D₂O.

Fig. S8 125 MHz ¹³C-NMR spectrum of [RuRu(py)₄Ru] dissolved in D₂O.

Fig. S9 2D $^{1}H^{-13}C$ HSQC spectrum of [RuRu(py)₄Ru] dissolved in D₂O.

Fig. S10 2D ¹H-¹⁵N HSQC spectrum of **[RuRu(py)**₄**Ru]** dissolved in D₂O.

Fig. S11 ¹H-DOSY spectrum of [RuRu(py)₄Ru] in D₂O at 298K. The diffusion coefficient is 2.48*10⁻⁶ cm²/s.

Fig. S12 Absorbance decay monitored at 360 nm in aqueous solution as a function of time for different [**RuRu(py)**₄**Ru**] concentrations (top) and for different Ce(IV) concentrations (center). Plot of the rate constant vs [**RuRu(py)**₄**Ru**] concentrations (bottom). Conditions: pH = 1.0 (aqueous 0.1 M triflic acid) and T = 298 K.

Calculation of the number of transferred electrons

Fig. S13 shows the fit of the plot of i_p vs the $v^{1/2}$ used for the calculation of the number of transferred electrons according with the Randles-Ševčík equation (1) where i_p is the anodic peak current α , n is the number of transferred electrons, F is the Faraday constant (96500 C), A is the active area of the working electrode (0.0707 cm²), C is the catalyst concentration in mol cm⁻³, v is the scan rate in V s⁻¹, D is the diffusion coefficient (cm² s⁻¹) calculated from ¹H-DOSY experiments, T is the temperature in kelvin and R is the ideal gas constant (8.314 J mol⁻¹ K⁻¹).

Fig. S13 Left: CV of **[RuRu(tbupy)**₄**Ru]** in CH₂Cl₂ (0.2 M TBAPF₆) at different scan rates. Right: plot of the anodic current i_p (Ru^{III/II}) vs square root of the scan rate ($v^{1/2}$). Conditions: WE (glassy carbon electrode), CE (platinum wire), RE (Ag wire) and [C] = 0.41 mM.

Fig. S14 Upper graph: CV of **[RuRu(py)**₄**Ru]** in 0.1 M triflic acid (pH = 1) at different scan rates. Lower graphs: Plots of the anodic current i_p (Ru^{III/II}) vs square root of the scan rate ($v^{1/2}$) for the first oxidation (left) and the second oxidation (right) process. Conditions: WE (glassy carbon electrode), CE (platinum wire), RE (Ag/AgCl 3M NaCl) and [C] = 1.28 mM.

Fig. S15 SWV of **[RuRu(py)**₄**Ru]** at different pH's (left). Potential vs pH diagram (right). Conditions: WE (glassy carbon electrode), CE (platinum wire), RE (Ag/AgCl 3M NaCl). v = 100 mV/s.

Fig. S16 Anodic scan of the CVs for [RuRu(py)₄Ru] in H₂O and D₂O at in 0.1 M triflic acid (pH = 1 and pD = 1). [RuRu(py)₄Ru] = 1.20 mM.

Fig. S17 Plot of calculated the k_{WNA} and k_D vs complex concentration [**RuRu(py)**₄**Ru**].

Fig. S18 UV-visible spectra of complexes *trans*-Ru(tbupy)₄(CN)₂ (olive trace) and [RuRu(tbupy)₄Ru] (black trace) in CH₂Cl₂ and [RuRu(py)₄Ru] (red trace) in 0.1 M triflic acid (pH = 1) at 298 K.

Fig. S19 UV-Vis spectroelectrochemistry for **[RuRu(tbupy)**₄**Ru]** in CH₂Cl₂ (0.2 M TBAH). The arrows indicate observed changes. Conditions: WE (platinum), CE (platinum), RE (Ag/AgCl 3M NaCl).

Fig. S20 UV-Vis spectroelectrochemistry of **[RuRu(py)**₄**Ru]** in 0.1 M triflic acid (pH = 1). The arrows indicate changes during the reduction process. Conditions: WE (platinum), CE (platinum), RE (Ag/AgCl 3M NaCl).

Fig. S21 UV-Vis spectroelectrochemistry of **[RuRu(py)**₄**Ru]** in 0.1 M triflic acid (pH = 1). The arrows indicate observed changes. Conditions: WE (platinum), CE (platinum), RE (Ag/AgCl 3M NaCl).

Table S1. Energies values and percentual group contributions of selected MOs of complex **[RuRu(tbupy)**₄**Ru]** in their singlet ground state.

MOs	Energy (eV)	Rutbupy	Ru _{bda}	tbupy	bda
L+10	-1.06	2	1	97	0
L+9	-1.23	5	0	95	0
L+8	-1.32	1	1	98	0
L+7	-1.37	4	0	96	0
L+6	-1.49	3	1	96	0
L+5	-1.87	0	4	0	96
L+4	-1.88	0	3	0	96
L+3	-2.16	0	2	0	98
L+2	-2.16	0	2	0	98
L+1	-2.55	0	7	0	92
LUMO	-2.55	1	7	0	92
НОМО	-5.35	25	54	2	20
H-1	-5.41	22	57	2	20
H-2	-5.48	31	50	2	17
H-3	-5.58	81	0	19	0
H-4	-5.59	33	48	3	17
H-5	-5.83	6	66	1	27
H-6	-5.96	7	66	1	26
H-7	-6.16	41	33	6	21
H-8	-6.25	36	39	6	19
H-9	-6.77	2	5	0	93
H-10	-6.78	1	5	0	94

Fig. S22 Molecular orbital diagram and partial density of states (PDOS) of complex [RuRu(tbupy)₄Ru] in their singlet ground state.

Alpha orbitals	Energy (eV)	Rutbupy	Ru _{bda}	tbupy	bda
L+10	-2.01	3	1	96	0
L+9	-2.66	9	59	0	32
L+8	-2.67	5	60	0	34
L+7	-2.69	1	62	0	37
L+6	-2.74	14	56	0	29
L+5	-3.02	0	2	0	98
L+4	-3.02	0	2	0	98
L+3	-3.23	0	1	0	98
L+2	-3.23	0	1	0	98
L+1	-3.72	0	4	0	95
LUMO	-3.72	0	4	0	95
номо	-6.28	81	0	19	0
H-1	-6.49	85	5	9	1
H-2	-6.5	85	4	9	1
H-3	-7.55	3	6	1	90
H-4	-7.56	2	8	0	90
H-5	-7.68	6	50	2	42
H-6	-7.71	6	45	6	43
H-7	-7.74	3	46	1	51
H-8	-7.75	3	46	1	50
H-9	-7.86	0	2	0	98
H-10	-7.86	0	2	1	97

Table S2. Energies values and percentual group contributions of selected alpha MOs of complex [Ru^{III}Ru^{III}(tbupy)₄Ru^{III}]²⁺ in their triplet ground state.

Beta orbitals	eV	Rutbupy	Ru _{bda}	tbupy	bda
L+10	-2.83	2	4	92	2
L+9	-2.89	18	54	3	25
L+8	-3.29	0	2	0	97
L+7	-3.29	0	2	0	97
L+6	-3.5	0	1	0	99
L+5	-3.5	0	1	0	99
L+4	-3.98	0	4	0	96
L+3	-3.98	0	4	0	96
L+2	-4.94	1	72	0	27
L+1	-4.95	1	72	0	27
LUMO	-5.88	79	0	21	0
номо	-7.73	13	53	1	34
H-1	-7.81	7	49	1	44
H-2	-7.84	3	13	0	85
H-3	-7.85	2	6	0	92
H-4	-8.03	25	46	3	27
H-5	-8.11	1	3	0	96
H-6	-8.12	1	2	0	97
H-7	-8.19	8	55	2	34
H-8	-8.49	51	5	32	12
H-9	-8.57	35	12	39	14
H-10	-8.68	0	1	1	98

Table S3. Energies values and percentual group contributions of selected beta MOs of complex [Ru^{III}Ru^{III}(tbupy)₄Ru^{III}]²⁺ in their triplet ground state.

Fig. S23 Molecular orbital diagram and partial density of states (PDOS) of complex **[Ru^{III}Ru^{III}(tbupy)**₄**Ru^{III}]**²⁺ in their triplet ground state.

Fig. S24 Molecular orbitals of complex [Ru^{III}Ru^{III}(tbupy)₄Ru^{III}]²⁺ involved in MM´CT transitions.

Table S4. Energies values and percentual group contributions of selected alpha MOs of complex [Ru^{III}Ru^{III}(tbupy)₄Ru^{III}]³⁺ in their quartet ground state.

Alpha	eV	Rutbupy	Ru_{bda}	tbupy	bda
orbitals		-			-
L+10	-2.87	2	1	97	0
L+9	-3.03	0	61	0	38
L+8	-3.05	0	61	0	39
L+7	-3.11	13	56	0	30
L+6	-3.25	17	49	2	32
L+5	-3.31	0	3	0	96
L+4	-3.32	1	5	0	95
L+3	-3.5	0	2	0	98
L+2	-3.51	1	3	0	96
L+1	-4	0	4	0	96
LUMO	-4	0	4	0	96
номо	-7.82	2	8	0	90
H-1	-7.83	2	8	0	90
H-2	-8	10	48	1	42
H-3	-8.05	4	44	1	52
H-4	-8.08	4	41	0	55
H-5	-8.1	2	36	0	62
H-6	-8.12	1	8	0	91
H-7	-8.13	1	15	0	84
H-8	-8.33	21	49	3	27
H-9	-8.44	8	53	4	35
H-10	-8.69	8	1	16	75

Beta orbitals	eV	Rutbupy	Ru _{bda}	tbupy	bda
L+10	-2.83	2	4	92	2
L+9	-2.89	18	54	3	25
L+8	-3.29	0	2	0	97
L+7	-3.29	0	2	0	97
L+6	-3.5	0	1	0	99
L+5	-3.5	0	1	0	99
L+4	-3.98	0	4	0	96
L+3	-3.98	0	4	0	96
L+2	-4.94	1	72	0	27
L+1	-4.95	1	72	0	27
LUMO	-5.88	79	0	21	0
НОМО	-7.73	13	53	1	34
H-1	-7.81	7	49	1	44
H-2	-7.84	3	13	0	85
H-3	-7.85	2	6	0	92
H-4	-8.03	25	46	3	27
H-5	-8.11	1	3	0	96
H-6	-8.12	1	2	0	97
H-7	-8.19	8	55	2	34
H-8	-8.49	51	5	32	12
H-9	-8.57	35	12	39	14
H-10	-8.68	0	1	1	98

Table S5. Energies values and percentual group contributions of selected beta MOs of complex [Ru^{III}Ru^{III}(tbupy)₄Ru^{III}]³⁺ in their quartet ground state.

Fig. S25 Molecular orbital diagram and partial density of states (PDOS) of complex [Ru^{III}Ru^{III}(tbupy)₄Ru^{III}]³⁺ in their quartet ground state.

N 1 -	M <i>t</i>		NA - ¹	A
NO.	Wavelength (nm)	Osc. Strength	Major contributions	Assignment
6	516.7	0.0184	H-4->L+1 (14%)	d(Ru _{bda} ,Ru _{tbupy})-> π *(bda)
			H-1->L+2 (14%)	
			HOMO->L+1 (27%)	
			HOMO->L+3 (19%)	
8	506.4	0.0108	H-4->L+1 (17%)	d(Ru _{bda} ,Ru _{tbupy})->π*(bda)
			H-1->L+2 (16%)	
			HOMO->L+1 (10%)	
			HOMO->L+3 (24%)	
16	456.0	0.0203	H-5->LUMO (12%)	d(Ru _{bda}) -> π*(bda)
			H-2->LUMO (11%)	
			H-2->L+3 (12%)	
22	106.1	0.0255	H-1->L+3 (10%)	
32	406.1	0.0255	H-4->L+5 (30%)	d(RU _{bda} ,RU _{tbupy})->π*(bda)
24	200.1	0 0220	HUMU -> L+5(19%)	$d(\mathbf{D}_{1}, \mathbf{D}_{2}, \mathbf{b}_{2}) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)$
54	398.1	0.0338	$\Pi - 0 - 2 LOIVIO (10\%)$	a(Ru _{bda} ,Ru _{tbupy})>/('(Dua,LDupy)
			H-1-N+5 (23%)	
51	370.0	0.0432	$H_{3} > 1 + 6 (37\%)$	$d(R_{U_{M}}) \rightarrow \pi^{*}(thu_{N})$
51	570.0	0.0432	HOMO->I+6 (17%)	$d(Ru_{Hubd}) \rightarrow \pi^*(hda)$
53	368.4	0.0702	H-6->I+2 (11%)	$d(Ruthuny) \rightarrow \pi^*(thuny)$
			H-3->L+6 (12%)	$d(Ru_{bd_2}) \rightarrow \pi^*(bd_2)$
			HOMO->L+7 (21%)	
59	354.8	0.0635	H-3->L+7 (15%)	d(Ru _{bda} ,Ru _{thupy})->π*(tbupy)
			H-2->L+8 (21%)	
			H-1->L+8 (29%)	
63	352.0	0.1255	H-3->L+8 (36%)	d(Ru _{bda} ,Ru _{tbupy})->π*(tbupy)
64	351.6	0.1467	H-3->L+7 (11%)	d(Ru _{bda} ,Ru _{tbupy})->π*(tbupy)
			H-3->L+8 (16%)	
			H-2->L+9 (12%)	
			H-1->L+9 (15%)	
69	346.2	0.0995	H-4->L+6 (57%)	d(Ru _{bda} ,Ru _{tbupy})->π*(tbupy)
			HOMO->L+6 (11%)	
141	291.3	0.0693	H-21->LUMO (10%)	d(Ru _{bda} ,Ru _{tbupy})->π*(tbupy)
			H-18->LUMO (12%)	
166	282.9	0.1026	H-8->L+8 (27%)	$d(Ru_{bda}, Ru_{tbupy}) > \pi^*(bda, tbupy)$
			H-4->L+15 (17%)	π(bda)>π*(bda)
			HOMO->L+15 (14%)	

Table S6. (TD)DFT assignments for calculated UV-Vis transitions of complex **[RuRu(tbupy)**₄**Ru]** in their singlet ground state.

Fig. S26 (TD)DFT-calculated (dashed curve) and experimental (solid curve) UV-visible absorption spectra of complex **[RuRu(tbupy)**₄**Ru]** in their singlet ground state. Calculated transition are represented by black vertical bars.

Table S7. (TD)-DFT assignments for calculated UV-Vis transitions of complex [Ru^{III}Ru^{III}(tbupy)₄Ru^{III}]²⁺ in their triplet ground state.

No.	Wavelength (nm)	Osc. Strength	Major	Assignment
9	817.7	0.0114	H-8β->LUMOβ (13%) H-7β ->LUMOβ (10%) H-2β->LUMOβ (53%)	d(Ru _{tbupy}) ->d(Ru _{bda})
10	811.9	0.0053	H-8β->L+1β (12%), H-7β->L+1β (11%) H-2β->L+1β (52%)	d(Ru _{tbupy}) ->d(Ru _{bda})
23	536.3	0.0075	H-2α ->LUMOα (49%) H-2β->L+2β (39%)	d(Ru _{tbupy}) ->π*(bda)
24	535.2	0.0038	H-2α->L+1α (48%) H-2β->L+3β (40%)	$d(Ru_{tbupy}) \rightarrow \pi^*(bda)$
102	391.7	0.0122	H-6β->L+2β (21%) H-5β->L+3β (27%)	d(Ru _{tbupy}) ->π*(bda)
140	355.5	0.0459	ΗΟΜΟ α->L+10α (38%) ΗΟΜΟ β->L+12β (42%)	d(Ru _{tbupy}) ->π*(tbupy)
159	345.9	0.0521	H-1α->L+28α (11%) HOMO α->L+11α (23%) HOMO β->L+13β (28%)	d(Ru _{tbupy}) ->π*(tbupy)
160	345.8	0.0417	H-1α->L+28α (15%) HOMO α->L+11α (20%) HOMO β->L+13β (17%)	d(Ru _{tbupy}) ->π*(tbupy)
189	334.7	0.0799	H-2α->L+10α (13%) HOMO α->L+13α (28%) H-2β->L+12β (12%) HOMO β->L+15β (29%)	d(Ru _{tbupy}) ->π*(tbupy)
218	322.1	0.1031	H-1α->L+13α (42%) H-1β->L+14β (32%)	d(Ru _{tbupy}) ->π*(tbupy)
321	290.9	0.2091	HOMO β->L+16β (13%)	$d(Ru_{tbupy}) \rightarrow \pi^*(bda)$

Fig. S27 Left: (TD)DFT-calculated (dashed curve) and experimental (solid curve) UV-visible absorption spectra of complex [Ru^{III}Ru^{III}(tbupy)₄Ru^{III}]²⁺ in their triplet ground state. Calculated transition are represented by red vertical bars.

Table S8. (TD)DFT assignments for calculated UV-Vis transitions of complex [Ru^{III}Ru^{III}(tbupy)₄Ru^{III}]³⁺ in their quartet ground state.

No.	Wavelength (nm)	Osc. Strength	Major	Assignment
			contributions	
12	676.3	0.0033	H-9 β ->LUMO β (43%)	d(Ru _{tbupy}),π(bda)->d(Ru _{tbupy})
			H-4 β ->LUMO β (51%)	
23	521.8	0.0066	H-20 β ->LUMO β (82%)	π (tbupy)->d(Ru _{tbupy})
34	481.8	0.083	H-22 β ->LUMO β (83%)	π(tbupy)->d(Ru _{tbupy})
35	478.7	0.0733	H-21 β ->LUMO β (75%)	π(tbupy)->d(Ru _{tbupy})
94	373.9	0.043	H-26 β ->L+2 β (40%)	π(tbupy,bda)->d(Ru _{tbupy})
			H-14 β ->L+2 β (19%)	
97	370.0	0.0117	H-26 β ->L+2 β (11%)	π(tbupy) ->d(Ru _{bda})
			H-14 β ->L+2 β (67%)	
257	291.2	0.0804	H-12 α ->L+1 α (13%)	d(Ru _{bda}) ->π*(bda)
			H-2 α ->L+3 α (12%)	
			H-4 β ->L+8 β (10%)	
269	288.1	0.0869	H-3 β ->L+13 β (10%)	π(bda) -> d(Ru _{bda})
			H-2 β ->L+9 β (16%)	

Fig. S28 (TD)DFT-calculated (dashed curve) and experimental (solid curve) UV-visible absorption spectra of complex [Ru^{III}Ru^{III}(tbupy)₄Ru^{III}]³⁺ in their quartet ground state. Calculated transition are represented by green vertical bars.

Table S9. Energies values and percentual group contributions of selected MOs of complex [Ru^{II}Ru^{II}(py)₄Ru^{II}] in their singlet ground state.

MO´s	Energy (eV)	Ru _{py}	Ru _{bda}	ру	bda
L+10	-1.2	1	1	98	0
L+9	-1.5	6	0	94	0
L+8	-1.6	2	1	97	0
L+7	-1.61	3	0	96	1
L+6	-1.63	2	1	97	0
L+5	-1.93	0	4	0	96
L+4	-1.94	0	3	0	96
L+3	-2.2	0	1	0	98
L+2	-2.21	0	1	0	98
L+1	-2.57	0	7	0	92
LUMO	-2.58	0	7	0	92
НОМО	-5.48	19	59	1	21
H-1	-5.54	10	67	1	23
H-2	-5.61	37	47	2	14
H-3	-5.73	32	49	2	16
H-4	-5.81	83	0	17	0
H-5	-5.94	6	67	1	27
H-6	-6.05	7	68	0	25
H-7	-6.31	48	28	6	18
H-8	-6.39	43	34	6	17
H-9	-6.91	2	5	0	93
H-10	-6.92	2	5	0	94

Fig. S29 Molecular orbital diagram and partial density of states (PDOS) of complex **[Ru^{II}Ru^{II}(py)₄Ru^{II}]** in their singlet ground state.

Table S10. Energies values and percentual group contributions of selected alpha MOs of the complex [Ru^{III}Ru^{III}(py)₄Ru^{III}]²⁺ in their triplet ground state.

MOs	Energy (eV)	Ru _{py}	Ru _{bda}	ру	bda	H₂O
L+10	-1.74	2	1	97	0	0
L+9	-2.23	15	57	0	27	1
L+8	-2.3	14	57	0	28	1
L+7	-2.49	0	56	0	44	0
L+6	-2.5	0	54	0	46	0
L+5	-2.56	0	10	0	90	0
L+4	-2.57	0	12	0	88	0
L+3	-2.73	0	1	0	98	0
L+2	-2.74	0	2	0	98	0
L+1	-3.24	0	4	0	96	0
LUMO	-3.24	0	4	0	96	0
номо	-6.02	83	0	17	0	0
H-1	-6.18	86	5	8	1	0
H-2	-6.18	87	5	7	1	0
H-3	-6.84	0	46	0	43	10
H-4	-6.84	0	46	0	43	10
H-5	-7.22	3	7	0	89	0
H-6	-7.23	3	8	0	89	0
H-7	-7.32	5	50	1	43	0
H-8	-7.37	6	44	3	47	0
H-9	-7.51	0	3	0	97	0
H-10	-7.52	0	3	0	96	0

MOs	Energy (eV)	Ru _{py}	Ru _{bda}	ру	bda	H₂O
L+10	-1.94	14	59	0	26	1
L+9	-2.24	0	64	0	36	0
L+8	-2.26	0	64	0	36	0
L+7	-2.54	0	3	0	97	0
L+6	-2.55	0	3	0	97	0
L+5	-2.73	0	1	0	99	0
L+4	-2.73	0	1	0	99	0
L+3	-3.2	0	8	0	92	0
L+2	-3.21	0	8	0	92	0
L+1	-3.74	0	68	0	26	6
LUMO	-3.74	0	68	0	26	6
номо	-6.02	83	0	17	0	0
H-1	-6.15	84	7	7	2	0
H-2	-6.15	83	8	7	2	0
H-3	-7.07	5	58	1	36	0
H-4	-7.14	9	50	3	38	0
H-5	-7.2	4	18	1	77	0
H-6	-7.21	4	9	1	86	0
H-7	-7.36	8	51	2	38	1
H-8	-7.44	12	54	5	29	1
H-9	-7.51	0	1	0	99	0
H-10	-7.51	0	1	0	99	0

Table S11. Energies values and percentual group contributions of selected beta MOs of the complex [Ru^{III}Ru^{III}(py)₄Ru^{III}]²⁺ in their triplet ground state.

Fig. S30 Molecular orbital diagram and partial density of states (PDOS) of complex [**Ru**^{III}**Ru**^{III}(**py**)₄**Ru**^{III}]²⁺ in their triplet ground state.

Fig. S31 Molecular orbitals of complex [Ru^{III}Ru^{III}(py)₄Ru^{III}]²⁺ involved in MM´CT transitions #9 and #10.

Table S12. Energies values and percentual group contributions of selected alpha MOs of the complex $[Ru^{V}Ru^{II}(py)_{4}Ru^{IV}]^{2+}$ in their doublet ground state.

MOs	Energy (eV)	Ru _{py}	Ru _{bdaOH}	Ru_{bdaO}	ру	bda _{он}	bda _o	ОН	0
L+10	-2.66	10	1	49	0	0	23	0	17
L+9	-2.71	0	0	1	0	2	97	0	0
L+8	-2.72	0	1	0	0	97	2	0	0
L+7	-2.86	0	0	2	0	0	97	0	1
L+6	-2.87	0	1	0	0	99	0	0	0
L+5	-3.41	0	0	4	0	0	95	0	1
L+4	-3.43	0	5	0	0	95	0	0	0
L+3	-3.57	1	55	0	0	31	0	13	0
L+2	-3.79	6	0	54	0	0	35	0	5
L+1	-3.9	0	60	0	0	32	0	8	0
LUMO	-4.39	0	0	56	0	0	31	0	13
номо	-6.16	83	0	0	17	0	0	0	0
H-1	-6.38	88	2	1	8	0	0	0	0
H-2	-6.4	88	2	1	9	0	0	0	0
H-3	-7.33	3	5	0	0	91	0	1	0
H-4	-7.49	3	0	6	0	0	88	0	2
H-5	-7.61	1	5	0	0	94	0	0	0
H-6	-7.7	3	31	0	3	53	0	9	0
H-7	-7.78	1	6	0	1	63	0	28	0
H-8	-7.79	0	0	1	7	0	92	0	0
H-9	-7.8	0	1	0	90	1	8	0	0
H-10	-7.87	4	8	3	76	2	6	1	0

MOs	Energy (eV)	Ru _{py}	Ru_{bdaOH}	Ru _{bdaO}	ру	bda _{он}	bda _o	ОН	0
L+10	-2.71	0	0	1	0	2	97	0	0
L+9	-2.72	0	1	0	0	97	2	0	0
L+8	-2.85	0	0	1	0	0	98	0	1
L+7	-2.87	0	1	0	0	99	0	0	0
L+6	-3.29	0	0	6	0	0	88	0	6
L+5	-3.43	0	5	0	0	95	0	0	0
L+4	-3.57	1	52	4	0	29	2	12	1
L+3	-3.59	6	4	53	0	2	28	1	7
L+2	-3.9	0	60	0	0	32	0	8	0
L+1	-4.17	0	0	54	0	0	24	0	21
LUMO	-4.68	2	0	30	0	0	16	0	51
номо	-6.15	83	0	0	17	0	0	0	0
H-1	-6.38	88	2	1	8	0	0	0	0
H-2	-6.38	87	2	0	8	0	1	0	1
H-3	-7.33	3	5	0	0	91	0	1	0
H-4	-7.51	3	0	7	0	0	90	0	0
H-5	-7.61	1	5	0	0	94	0	0	0
H-6	-7.7	3	31	0	3	53	0	9	0
H-7	-7.76	0	0	0	1	0	76	0	22
H-8	-7.78	1	6	0	2	61	3	28	0
H-9	-7.79	0	0	1	4	2	91	1	0
H-10	-7.8	0	1	0	92	1	6	0	0

Fig. S32 Molecular orbital diagram and partial density of states (PDOS) of complex [Ru^VRu^{II}(py)₄Ru^{IV}]²⁺ in their doublet ground state.

Fig. S33 Molecular orbitals of complex [Ru^VRu^{II}(py)₄Ru^{IV}]²⁺ involved in MM´CT transitions #3.

No	Wavelength (nm)	Osc Strength	Major	Assignment
NO.	wavelength (init)	Osc. Strength	contributions	Assignment
6	498.3	0.0151	H-3->L+1 (10%)	d(Ru _{bda} ,Ru _{py})->π*(bda)
			H-1->L+2 (22%)	
			HOMO->L+1 (18%)	
			HOMO->L+3 (24%)	
8	489.7	0.0193	H-3->L+1 (27%)	d(Ru _{bda} ,Ru _{py})->π*(bda)
			H-1->L+2 (10%)	
			HOMO->L+1 (14%)	
			HOMO->L+3 (16%)	
16	442.0	0.0316	H-5->L+2 (13%)	d(Ru _{bda} ,Ru _{py})->π*(bda)
			H-2->L+2 (23%)	
			H-2->L+3 (17%)	
36	389.1	0.0292	H-2->L+5 (46%)	d(Ru _{bda} ,Ru _{py})->π*(bda)
60	260.2	0 4 2 7 5	H-1->L+5 (16%)	
60	360.2	0.1275	H-4->L+4(10%)	$d(Ru_{py}, Ru_{bda}) \rightarrow \pi^{*}(py)$
			H-4->L+7(13%)	
			HOMO->L+0 (41%)	
61	357 3	0.0839	$H_{-4->1+5}(10\%)$	d(Ru Ru)->π*(py)
01	337.3	0.0000	H-4->I +7 (28%)	
			H-4->L+8 (10%)	
			H-1->L+6 (22%)	
69	346.3	0.0474	H-5->L+4 (20%)	d(Ru _{bda} ,Ru _{py})->π*(bda)
			H-5->L+5 (29%)	
71	342.3	0.0119	H-6->L+5 (39%)	d(Ru _{bda} ,Ru _{py})->π*(bda)
			H-3->L+4 (10%)	
105	310.7	0.0376	H-2->L+11 (17%)	d(Ru _{py} ,Ru _{bda}) ->π*(py)
			H-2->L+12 (10%)	
			H-2->L+13 (12%)	
			H-1->L+11 (12%)	
147	286.6	0.2903	H-18->LUMO (13%)	π(bda)>π*(bda)
			H-18->L+1 (11%)	
			H-17->LUMO (11%)	
			H-17->L+1(12%)	
			H-10->L+4 (13%)	
148	285.2	0 0875	H-17->L+3 (20%)	$\pi(hda) > \pi^*(hda)$
140	205.2	0.0075	H-10->1+5(14%)	
			H-9->1+4 (26%)	
			H-9->L+5 (25%)	
266	247.0	0.1809	H-2->L+18 (22%)	$d(Ru_{pv}, Ru_{bda}) \rightarrow \pi^*(bda)$
-	-		H-2->L+20 (10%)	(p), 200) - ()

Table S14. (TD)DFT assignments for calculated UV-Vis transitions of complex **[Ru^{II}Ru^{II}(py)₄Ru^{II}]** in their singlet ground state.

Fig. S34 (TD)DFT-calculated (dashed curve) and experimental (solid curve) UV-visible absorption spectra of complex [**Ru**^{II}**Ru**^{II}(**py**)₄**Ru**^{II}] in their singlet ground state. Calculated transition are represented by red vertical bars.

Table S15.	(TD)DFT	assignments for	calculated	UV-Vis	transitions	of the	complex	[<mark>Ru</mark> "Ru"([py)₄ <mark>Ru</mark> ^{III}]	²⁺ in their
triplet grou	ind state	•								

No.	Wavelength (nm)	Osc. Strength	Major contributions	Assignment
9	604.0	0.0009	H-8 β ->LUMO β(15%)	$d(Ru_{py}) \rightarrow d(Ru_{bda})$
			H-1 β ->LUMO β(61%)	
10	603.8	0.0003	H-8 β ->L+1 β(13%)	d(Ru _{py}) -> d(Ru _{bda})
			H-1 β ->L+1 β(54%)	
11	582.2	0.0056	H-4 α->L+4 α (13%)	$d(Ru_{bda}) \rightarrow d(Ru_{bda})$
			H-4 α->L+6 α (62%)	
			H-3 α->L+6 α (11%)	
12	579.5	0.0059	H-4 α->L+7 α (12%)	d(Ru _{bda}) -> d(Ru _{bda})
			H-3 α->L+5 α (10%)	
			H-3 α->L+7 α (65%)	
28	504.6	0.005	H-1 α->L+1 α (36%)	d(Ru _{py}) -> π*(bda)
			H-1 β ->L+3 β(33%)	
99	375.8	0.0159	H-6 α->LUMO α (14%)	LLCT (DMSO->bda)
			H-6 β ->L+2 β(31%)	
			H-5 β ->L+2 β(13%)	
123	357.6	0.0468	HOMO α->L+10 α (35%)	d(Ru _{py}) -> π*(py)
			HOMO β ->L+12 β(39%)	
124	356.5	0.0444	HOMO α ->L+11 α (36%)	d(Ru _{py}) -> π*(py)
			HOMO β ->L+13 β(39%)	
180	334.2	0.1576	H-1 α ->L+12 α (15%)	d(Ru _{py}) -> π*(py)
			H-1 α ->L+13 α (14%)	
			H-1 β ->L+14 β(12%)	
			H-1 β ->L+15 β(14%)	
182	333.0	0.1204	H-2 α ->L+13 α (19%)	d(Ru _{py}) -> π*(py)
	207 7	0.407	H-2 β ->L+15 β(18%)	
309	287.7	0.107	Η-1 β ->L+19 β(12%)	d(Ru _{py}) -> π*(py)
380	273.3	0.1078	H-6 β ->L+10 β(23%)	LMCT (DMSO->Ru _{bda})
			H-5 β ->L+11 β(14%)	LLCT (DMSO->bda)

Fig. S35 (TD)DFT-calculated (dashed curve) and experimental (solid curve) UV-visible absorption spectra of complex [**Ru**^{III}**Ru**^{III}(**py**)₄**Ru**^{III}]²⁺ in their triplet ground state. Calculated transition are represented by red vertical bars.

Fig. S36 Left: (TD)DFT-calculated (dashed curve) and experimental (solid curve) UV-visible absorption spectra of complex [Ru^{IV}Ru^{II}(py)₄Ru^{IV}]²⁺ in their singlet ground state. Calculated transition are represented by red vertical bars.

Table S16.	(TD)DFT	assignments for	calculated	UV-Vis	transitions	of the	complex	[<mark>Ru^vRu"(</mark> p	oy)₄Ru [™]]²	† in	their
doublet gro	ound stat	e.									

No.	Wavelength (nm)	Osc. Strength	Major contributions	Assignment
3	1092.7	0.0275	H-2β->LUMOβ (88%) H-1β->LUMOβ (10%)	$d(Ru_{py}) \rightarrow d(Ru_{bdaO})$
25	616.1	0.0078	H-4β->LUMOβ (91%)	π (bdaO) -> d(Ru _{bdaO})
125	397.2	0.0482	H-4α->L+2α (21%) H-4β->L+3β (48%)	$\pi(bdaO) \rightarrow d(Ru_{bdaO})$
210	348.4	0.0561	ΗΟΜΟα->L+12α (41%) ΗΟΜΟβ->L+13β (43%)	d(Ru _{py}) -> π*(py)
211	347.0	0.0623	ΗΟΜΟα->L+13α (45%) ΗΟΜΟβ->L+14β (46%)	d(Ru _{py}) -> π*(py)
307	320.5	0.0477	H-1α->L+15α (10%) H-4β->L+5β (11%)	d(Ru _{py}) -> π*(py)
308	320.2	0.0971	H-2α->L+14α (18%) H-29β->LUMOβ (20%) H-2β->L+15β (13%)	d(Ru _{py}) -> π*(py)

Fig. S37 Left: (TD)DFT-calculated (dashed curve) and experimental (solid curve) UV-visible absorption spectra of complex [Ru^VRu^{II}(py)₄Ru^{IV}]²⁺ in their triplet ground state. Calculated transition are represented by red vertical bars.