Electronic supplementary information (ESI)
 for

Enhanced luminescence properties through heavy ancillary ligands in $\left[\mathrm{Pt}\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right)(\mathrm{L})\right]$ complexes, $\mathrm{L}=\mathrm{AsPh}_{3}$ and SbPh_{3}

Rose Jordan, ${ }^{\mathrm{a}}$ Iván Maisuls, ${ }^{\mathrm{b}}$ Shruthi S. Nairc,d, Benjamin Dietzek-Ivanšić, ${ }^{*, c, d}$ Cristian. A. Strassert ${ }^{*}$,b and Axel Klein ${ }^{*, a}$
a University of Cologne, Faculty for Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, Greinstrasse 6, D-50939 Köln, Germany.
b Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, CiMIC, CeNTech, Heisenbergstraße 11, D-48149 Münster, Germany.
 ${ }^{d}$ Leibniz Institute for Photonic Technologies Jena (IPHT) Albert-Einstein-Str. 9, 07745 Jena, Germany.

Contents

Experimental Section

Syntheses

Supporting Figures

Fig. S1 $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S2 $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $[\mathrm{Pt}(\mathrm{dpp})(\mathrm{AsPh} 3)]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S3 $500 \mathrm{MHz}^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S4 $500 \mathrm{MHz}{ }^{1} \mathrm{H}_{1}{ }^{13} \mathrm{C}$ HSQC of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S5 $500 \mathrm{MHz}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC of $[\mathrm{Pt}(\mathrm{dpp})(\mathrm{AsPh} 3)]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S6 $600 \mathrm{MHz}^{1} \mathrm{H}$ NMR of $[\mathrm{Pt}(\mathrm{dpp})(\mathrm{SbPh} 3)]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S7 $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S8 $500 \mathrm{MHz}{ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S9 $500 \mathrm{MHz}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HSQC of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S10 $500 \mathrm{MHz}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S11 $500 \mathrm{MHz}^{1} \mathrm{H}$ NMR of [Pt(dba)(AsPh 3$\left.)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S12 $125 \mathrm{MHz}^{13} \mathrm{C}$ NMR of $[\mathrm{Pt}(\mathrm{dba})(\mathrm{AsPh} 3)]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S13 $500 \mathrm{MHz}^{1} \mathrm{H}^{1}{ }^{1} \mathrm{H}$ COSY of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S14 $500 \mathrm{MHz}{ }^{1} \mathrm{H}_{1}{ }^{13} \mathrm{C}$ HSQC of $[\mathrm{Pt}(\mathrm{dba})(\mathrm{AsPh} 3)]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S15 $500 \mathrm{MHz}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC of [$\left.\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S16 $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S17 $125 \mathrm{MHz}^{13} \mathrm{C}$ NMR of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S18 $500 \mathrm{MHz}^{1} \mathrm{H}_{,}{ }^{1} \mathrm{H}$ COSY of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S19 $500 \mathrm{MHz}{ }^{1} \mathrm{H}_{1}{ }^{13} \mathrm{C}$ HSQC of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S20 $500 \mathrm{MHz}^{1} \mathrm{H}_{1}{ }^{13} \mathrm{C}$ HMBC of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S21 $600 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectra from in situ NMR observation of a mixture of [Pt(dpp)(dmso)] and BiPh3.
Fig. S22 Crystal structure of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ viewed along the b axis and molecular structure.
Fig. S23 Crystal structure of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ viewed along the a axis and molecular structure.
Fig. S24 Crystal structure of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right] \cdot \mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{CHCl}_{3}$ viewed along the b axis and molecular structure.
Fig. S25 Crystal structure of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right] \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$ viewed along the c axis and molecular structure.
Fig. S26. Structures of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{BiPh}_{3}\right)\right]$ and $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{BiPh}_{3}\right)\right]$ from free and constrained DFT^{2} geometry optimisations.
Fig. S27 Cyclic voltammograms of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{PPh}_{3}\right)\right]$ in $0.1 \mathrm{M} n \mathrm{Bu}_{4} \mathrm{NPF}_{6} / \mathrm{THF}$.
Fig. S28 Cyclic voltammograms of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ in $0.1 \mathrm{M} n \mathrm{Bu}_{4} \mathrm{NPF}_{6} / \mathrm{THF}$.
Fig. S29 Cyclic voltammograms of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ in $0.1 \mathrm{M} n \mathrm{Bu} 4 \mathrm{NPF}_{6} / \mathrm{THF}$.
Fig. S30 Cyclic voltammograms of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)\right]$ in $0.1 \mathrm{M} n \mathrm{Bu} 4 \mathrm{NPF}_{6} / \mathrm{THF}$.
Fig. S31 Cyclic voltammograms of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$ in $0.1 \mathrm{M}_{n \mathrm{Bu}}^{4} \mathrm{NPFF}_{6} / \mathrm{THF}$.
Fig. S32 Cyclic voltammograms of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in $0.1 \mathrm{M} n \mathrm{Bu}_{4} \mathrm{NPF}_{6} / \mathrm{THF}$.
Fig. S33 Selected DFT-calculated frontier orbitals and energies for $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{PnPh}_{3}\right)\right](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi})$.
Fig. S34 Selected DFT-calculated frontier orbitals and energies for $[\mathrm{Pt}(\mathrm{dba})(\mathrm{PnPh} 3)](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi})$.
Fig. S35 Experimental UV-vis absorption spectra of $\mathrm{H}_{2} \mathrm{dpp}$ and the complexes $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{PnPh}_{3}\right)\right](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb})$.
Fig. S36 TD-DFT calculated UV-vis absorption spectra of the complexes $[\mathrm{Pt}(\mathrm{dpp})(\mathrm{PnPh} 3)](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi})$.

Fig. S37 Experimental UV-vis absorption spectra of $\mathrm{H}_{2} \mathrm{dba}$ and the complexes $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PnPh}_{3}\right)\right](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb})$.
Fig. S38 TD-DFT-calculated UV-vis absorption spectra of the complexes $[\mathrm{Pt}(\mathrm{dba})(\mathrm{PnPh} 3)](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi})$.
Fig. S39 UV-vis absorption spectra of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ during anodic and cathodic spectroelectrochemistry.
Fig. S40 UV-vis absorption spectra of $[\mathrm{Pt}(\mathrm{dpp})(\mathrm{SbPh} 3)]$ during anodic and cathodic spectroelectrochemistry.
Fig. S41 UV-vis absorption spectra of $[\mathrm{Pt}(\mathrm{dba})(\mathrm{AsPh} 3)]$ during anodic and cathodic spectroelectrochemistry.
Fig. S42 UV-vis absorption spectra of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ during anodic and cathodic spectroelectrochemistry.
Fig. S43 Photoluminescence spectrum of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{PPh}_{3}\right)\right]$ at 77 K .
Fig. S44 Photoluminescence spectrum of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ at 77 K .
Fig. S45 Photoluminescence spectrum of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ at 77 K .
Fig. S46 Photoluminescence spectra of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)\right]$ at 77 K and 298 K .
Fig. S47 Photoluminescence spectra of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$ at 77 K and 298 K .
Fig. S48 Photoluminescence spectra of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ at 77 K and 298 K .
Fig. S49 Transient absorption spectra and decay associated spectra of [$\mathrm{Pt}(\mathrm{dpp})(\mathrm{PnPh} 3)]$ upon excitation at 340 nm ($\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}$).
Fig. S50 Transient absorption spectra and decay associated spectra of $[\mathrm{Pt}(\mathrm{dba})(\mathrm{PnPh} 3)]$ upon excitation at 340 nm ($\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}$).
Fig. S51 Transient absorption spectra and decay associated spectra of $[\mathrm{Pt}(\mathrm{dba})(\mathrm{PnPh} 3)]$ upon excitation at 500 nm ($\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}$).
Fig. S52 Left: Raw (experimental) time-resolved photoluminescence decay of $\left[\operatorname{Pt}(\mathrm{dpp})\left(\mathrm{PPh}_{3}\right)\right]$ in a frozen $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ glassy matrix at 77 K including the residuals ($\lambda_{\text {ex }}=376 \mathrm{~nm}, \lambda_{\text {em }}=510 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.
Fig. S53 Left: Raw (experimental) time-resolved photoluminescence decay of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ in a frozen $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ glassy matrix at 77 K including the residuals ($\lambda_{\mathrm{ex}}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=515 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.
Fig. S54 Left: Raw (experimental) time-resolved photoluminescence decay of $[\mathrm{Pt}(\mathrm{dpp})(\mathrm{SbPh} 3)]$ in a frozen $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ glassy matrix at 77 K including the residuals ($\lambda_{\mathrm{ex}}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=515 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.
Fig. S55 Left: Raw (experimental) time-resolved photoluminescence decay of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)\right]$ in a frozen $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ glassy matrix at 77 K including the residuals ($\lambda_{\mathrm{ex}}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=575 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.
Fig. S56 Left: Raw (experimental) time-resolved photoluminescence decay of $[\mathrm{Pt}(\mathrm{dba})(\mathrm{AsPh} 3)]$ in a frozen $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ glassy matrix at 77 K including the residuals ($\lambda_{\mathrm{ex}}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=575 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.
Fig. S57 Left: Raw (experimental) time-resolved photoluminescence decay of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in a frozen $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ glassy matrix at 77 K including the residuals ($\lambda_{\text {ex }}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=575 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.
Fig. S58 Left: Raw (experimental) time-resolved photoluminescence decay of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K including the residuals ($\lambda_{\mathrm{ex}}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=600 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.
Fig. S59 Left: Raw (experimental) time-resolved photoluminescence decay of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K including the residuals $\left(\lambda_{\mathrm{ex}}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=600 \mathrm{~nm}\right.$). Right: Fitting parameters including pre-exponential factors and confidence limits.
Fig. S60 Left: Raw (experimental) time-resolved photoluminescence decay of [$\left.\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K including the residuals ($\lambda_{\mathrm{ex}}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=600 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Supporting Tables

Table S1 Selected structure solution and refinement data for crystal structures containing $\left[\operatorname{Pt}\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right)(\operatorname{PnPh} 3)\right]$ $\left(C^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}=\mathrm{dpp}, \mathrm{dba} ; \mathrm{Pn}=\mathrm{As}, \mathrm{Sb}\right)$.
Table S2 Selected structural data for $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{PnPh}_{3}\right)\right](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb})$ from scXRD and DFT geometry optimisations of the S_{0} states.
Table S3 Selected structural data for $[\mathrm{Pt}(\mathrm{dba})(\mathrm{PnPh} 3)](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb})$ from scXRD and DFT geometry optimisations of the S_{0} states.
Table S4 Selected structural data for $\left[\mathrm{Pt}\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right)(\mathrm{PnPh} 3)\right]\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}=\mathrm{dpp}, \mathrm{dba} ; \mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}\right)$ from DFT geometry optimizations of the T_{1} states.
Table S5 Selected structural data for $\left[\mathrm{Pt}\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right)(\mathrm{BiPh} 3)\right]\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}=\mathrm{dpp}\right.$, dba) from DFT geometry optimisations of the S_{0} state.

Table S6 Electrochemical data for the ligands $\mathrm{H}_{2} \mathrm{dpp}$ and $\mathrm{H}_{2} \mathrm{dba}$ and the complexes $\left[\mathrm{Pt}\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right)\left(\mathrm{PnPh}_{3}\right)\right](\mathrm{Pn}=\mathrm{P}$, $\mathrm{As}, \mathrm{Sb})$.
Table S7 UV-vis absorption data of the ligand $\mathrm{H}_{2} \mathrm{dpp}$ and the complexes $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{PnPh}_{3}\right)\right](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb})$.
Table S8 UV-vis absorption data of the ligand $\mathrm{H}_{2} \mathrm{dba}$ and the complexes $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PnPh}_{3}\right)\right](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb})$.

Experimental Section

Materials. All manipulations were carried out using standard Schlenk techniques. The reaction solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (HPLC grade) was degassed in three freeze-pump-thaw cycles and dried over activated $4 \AA$ molecular sieves. $[\mathrm{Pt}(\mathrm{dpp})(\mathrm{dmso})],[\mathrm{Pt}(\mathrm{dba})(\mathrm{dmso})],[\mathrm{Pt}(\mathrm{dpp})(\mathrm{PPh} 3)]$ and $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)\right]$ were prepared following reported procedures. ${ }^{1,2}$

Instrumentation - general. NMR spectra were recorded on a 600 MHz Bruker Avance II+ spectrometer or a 500 MHz Bruker Avance III spectrometer. All measurements were done at room temperature. ${ }^{1} \mathrm{H}$ signals were referenced to TMS. The following abbreviations are used to indicate the multiplicity of signals: $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, quint $=$ quintet, $m=$ multiplet. The assignment of the signals to the protons present in larger molecules was done with the help of 2D NMR experiments. High resolution electrospray ionisation (HR-ESI) mass spectra were measured on a Thermo Scientific LTQ Orbitrap XL spectrometer using an FTMS analyser. Cyclic voltammetry measurements were performed in a baked-out cyclic voltammetry cell with a glassy carbon working electrode, a platinum counter electrode and an $\mathrm{Ag} / \mathrm{AgCl}$ pseudo reference electrode. Scans were carried out in $0.1 \mathrm{M} n \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ THF solution at a scan rate of $50 \mathrm{mV} / \mathrm{s}$ or $100 \mathrm{mV} / \mathrm{s}$. The potential was regulated using a Metrohm μ Stat400 potentiostat. The measured data was referenced to the $\mathrm{FeCp}_{2} / \mathrm{FeCp}_{2}{ }^{+}$redox pair. UV-vis absorption spectra were measured on a Varian 50 Scan UV-vis photometer. Quartz glass cuvettes with a length of 1 cm were used and all spectra were baseline corrected.

Photoluminescence experiments. Photoluminescence spectra at were recorded with a Spex FluoroMax3 spectrometer. Luminescence quantum yields were determined with a Hamamatsu Photonics absolute PL quantum yield measurement system (C9920-02), equipped with a L9799-01 CW Xenon light source, monochromator, photonic multichannel analyser and integrating sphere. An error $\pm 2 \%$ for the photoluminescence quantum yield Φ is estimated. Degassed spectroscopic grade solvents were used. Photoluminescence quantum yields were measured with a Hamamatsu Photonics absolute PL quantum yield measurement system (C9920-02) equipped with a L9799-01 CW Xe light source (150 W), a monochromator, a C7473 photonic multi-channel analyser, an integrating sphere and employing U603905 software (Hamamatsu Photonics, Ltd., Shizuoka, Japan). Steady-state excitation and emission spectra were recorded on a FluoTime 300 spectrometer from PicoQuant equipped with: a 300 W ozone-free Xe lamp (250-900 nm), a 10 W Xe flash-lamp (250-900 nm, pulse width ca. $1 \mu \mathrm{~s}$) with repetition rates of 0.1 -300 Hz , a double-grating excitation monochromator (Czerny-Turner type, grating with 1200 lines $/ \mathrm{mm}$, blaze wavelength: 300 nm), diode lasers (pulse width $<80 \mathrm{ps}$) operated by a computer-controlled laser driver PDL-828 "Sepia II" (repetition rate up to 80 MHz , burst mode for slow and weak decays), two double-grating emission monochromators (Czerny-Turner, selectable gratings blazed at 500 nm with $2.7 \mathrm{~nm} / \mathrm{mm}$ dispersion and 1200 lines $/ \mathrm{mm}$, or blazed at 1200 nm with $5.4 \mathrm{~nm} / \mathrm{mm}$ dispersion and 600 lines $/ \mathrm{mm}$) with adjustable slit width between $25 \mu \mathrm{~m}$ and 7 mm , Glan-Thompson polarizers for excitation (after the Xe-lamps) and emission (after the sample). Different sample holders (Peltier-cooled mounting unit ranging from -15 to $110{ }^{\circ} \mathrm{C}$ or an adjustable front-face sample holder), along with two detectors (namely a PMA Hybrid-07 from PicoQuant with transit time spread FWHM < $50 \mathrm{ps}, 200-850 \mathrm{~nm}$, or a H10330C-45-C3 NIR detector with transit time spread FWHM $0.4 \mathrm{~ns}, 950-1700 \mathrm{~nm}$ from Hamamatsu) were used. Steady-state spectra and photoluminescence lifetimes were recorded in TCSPC mode by a PicoHarp 300 (minimum base resolution 4 ps) or in MCS mode by a TimeHarp 260 (where up to several ms can be traced). Emission and excitation spectra were corrected for source intensity (lamp and grating) by standard correction curves. For samples with lifetimes in the ns order, an instrument
response function calibration (IRF) was performed using a diluted Ludox® dispersion. Lifetime analysis was performed using the commercial EasyTau 2 software (PicoQuant). The quality of the fit was assessed by minimizing the reduced chi squared function (χ^{2}) and visual inspection of the weighted residuals and their autocorrelation. Assuming unitary intersystem crossing efficiencies (due to the chelation of a late transition metal), the average radiative and radiationless deactivation rate constants (k_{r} and k_{nr}, respectively) were calculated according to the following equations and relationships:
$k_{r}=\frac{\Phi_{L}}{\tau_{L}}, \quad k_{\mathrm{nr}}=\frac{1-\Phi_{\mathrm{L}}}{\tau_{L}}, \quad$ and $\tau_{\mathrm{L}}=\frac{1}{k_{r}+k_{n r}}$
where τ_{L} is the excited state lifetime (or amplitude-weighted average lifetime, $\tau_{\text {av_amp, }}$ for multiexponential decays).

Transient absorption spectroscopy. The ultrafast transient absorption (TA) experiments were performed using a custom-built setup described in detail elsewhere. ${ }^{3}$ We employ a Ti-Sapphire (Astrella, Coherent Inc.) regenerative amplifier, which produces $800 \mathrm{~nm}, 85$-fs pulses (laser power-5W, pulse-to-pulse repetition rate of 1 kHz). A part of the amplifier output at 800 nm is directed to an optical parametric amplifier (TOPAS Prime, Light Conversion) to generate the pump at 340 or 500 nm . The excited state dynamics was studied with white-light supercontinuum pulses (generated by focusing a small portion of the amplifier output onto CaF_{2} crystal). The fs-TA data was analysed using the KIMOPACK tool. ${ }^{4}$ Prior to global lifetime analysis, the data was arrival-time (chirp) corrected. The temporal resolution of the experiment is limited to 300 fs because of strong contributions of coherent artefact signals to the data interfere with reliable analysis of the pump-probe data at short delay times. The power of pump-pulse used was in the range of 0.4 to 0.8 mW , OD of sample at the excitation wavelength was in the range of 0.3 to 0.5 .

Structure solution from single crystal X-ray diffraction. scXRD measurements were performed on a Bruker D8 Venture diffractometer including a Bruker Photon 100 CMOS detector using Ag K $\alpha(\lambda=0.56086$ $\AA)$ or $\mathrm{Mo}_{\alpha}(\lambda=0.71073 \AA)$ radiation. The crystal data was collected using APEX4 v2021.10-0 ${ }^{5}$. The structures were solved by dual space methods using SHELXT, and the refinement was carried out with SHELXL employing the full-matrix least-squares methods on $\mathrm{Fo}^{2}<2 \sigma\left(\mathrm{Fo}^{2}\right)$ as implemented in ShelXle ${ }^{6-}$ 8. The non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints. The hydrogen atoms were included by using appropriate riding models.

Computational details. All DFT calculations were performed using ORCA 5.0.2.9,10 For all atoms, def2TZVP basis sets, as well as the corresponding def2-ECPs for Pt and Sb , were used unless stated otherwise. ${ }^{11}$ The S_{0} and T_{1} geometries of all compounds were optimised at the BP86 level of theory, using Grimme's D3 dispersion correction and the conductor-like polarisable continuum model (CPCM) parametrised for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an approximate solvation model. ${ }^{12-17}$ The geometry optimisations were followed up with numerical frequency calculations in order to confirm the energetic minimum nature of the optimised structure as indicated by the absence of imaginary modes. On the optimised geometries, single point and TD-DFT calculations were performed using the TPSSh functional, Grimme's D3 dispersion correction and CPCM parametrised for $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{18}$ Orbital isosurfaces were extracted from the S_{0} single point calculations using the ORCA module orca_plot and plotted with the visualisation software CHEMCRAFT at an isovalue of $0.04 .{ }^{19}$ For the TD-DFT calculations of absorption spectra for the S_{0} states, 40 roots (transitions) for singlets and triplets each were included for each complex. Broadened spectra were obtained using the orca_mapspc module with $2000 \mathrm{~cm}^{-1}$ full width at half maximum band broadening. The TD-DFT calculation output was further evaluated using the software package TheoDORE to analyse relative MLCT, L'MCT, LC, LL'CT, and MC contributions to the emissive T_{1} states, using the implemented standard algorithm for molecular partitioning of transition metal complexes employing Openbabel. ${ }^{20}$ At the T_{1} geometries, spin-orbit (SO) calculations were performed using the Zeroth-Order Regular Approximation (ZORA), the TPSSh functional, SARC-ZORA-TZVP basis sets for Pt and Sb , and the CPCM parametrised for $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{21-23}$

Syntheses

[$\left.\mathbf{P t}(\mathbf{d p p})\left(\mathbf{A s P h}_{3}\right)\right] 50.0 \mathrm{mg}(0.100 \mathrm{mmol}, 1.00 \mathrm{eq}$.$\left.) [\mathrm{Pt}(\mathrm{dpp})(\mathrm{dmso})\right]$ were dissolved in $3 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 30.6 mg ($0.100 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) AsPh 3$ were added. After 10 min , the solvent was removed and the crude product was purified via silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Yield: $54.1 \mathrm{mg}(0.074 \mathrm{mmol}, 74 \%)$ orange solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ [ppm] $=7.81-7.75(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 13), 7.66\left(\mathrm{t},{ }^{3}{ }^{3} \mathrm{H}, \mathrm{H}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4\right), 7.46\left(\mathrm{t},{ }^{3}{ }^{3} \mathrm{H}, \mathrm{H}=7.4\right.$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{H} 14), 7.44-7.38$ (m, 8H, H10 and H12), 7.34 (d, $\left.{ }^{3} \mathrm{H}, \mathrm{H}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3\right)$, 6.90 (td, ЈН, $=7.4 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 9), 6.62(\mathrm{td}, \mathrm{J}, \mathrm{H}=7.3 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 8)$, 6.48 (dd, $J_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}, 0.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{Pt}, \mathrm{H}}=25.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=166.7$ (C2), 164.9 (C5), 150.8 (C6), 140.4 (C4), 139.2 (C7), 134.5 (C13), 133.2 (C11), 130.4 (C14), 129.8 (C8), 128.6 (C12), 123.8 (C10), 123.5 (C9),
 114.8 (C3). HR-ESI-MS(+): $\mathrm{m} / \mathrm{z}=730.09913$ ([M] ${ }^{+}$, calc.: $\mathrm{m} / \mathrm{z}=730.09806$).
[$\left.\mathbf{P t}(\mathbf{d p p})\left(\mathbf{S b P h}_{3}\right)\right] 50.0 \mathrm{mg}\left(0.100 \mathrm{mmol}, 1.00\right.$ eq.) $[\mathrm{Pt}(\mathrm{dpp})(\mathrm{dmso})]$ were dissolved in $3 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 38.8 mg ($0.110 \mathrm{mmol}, 1.10 \mathrm{eq})$.SbPh 3 were added. After 10 min , the solvent was removed and the crude product was purified via silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Yield: $50.0 \mathrm{mg}(0.064 \mathrm{mmol}, 64 \%)$ orange solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ $[\mathrm{ppm}]=7.76-7.72(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 13), 7.67\left(\mathrm{t},{ }^{3} \mathrm{~J}, \mathrm{H}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4\right), 7.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 14)$, $7.45-7.40\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H} 10\right.$ and H12), $7.34\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3\right), 7.03\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=\right.$ $\left.7.3 \mathrm{~Hz}, 1.3 \mathrm{~Hz},{ }^{3} \mathrm{JPt}_{\mathrm{t}, \mathrm{H}}=32.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7\right) 6.93\left(\mathrm{td}, J_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 9\right)$, 6.67 (td, $\left.J_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 8\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta[\mathrm{ppm}]=$ 166.6 (C2), 164.0 (C5), 150.9 (C6), 141.7 (C7), 140.6 (C4), 136.5 (C13), 130.7 (C8), 130.4 (C14), 129.9 (C11), 129.0 (C12), 124.0 (C10), 123.6 (C9), 115.0 (C3). HR-ESI-
 MS(+): m/z = 776.08145 ([M] ${ }^{+}$, calc.: $\mathrm{m} / \mathrm{z}=776.08028$).
[$\left.\mathbf{P t}(\mathbf{d b a})\left(\mathbf{A s P h}_{3}\right)\right] 35.0 \mathrm{mg}\left(0.068 \mathrm{mmol}, 1.00\right.$ eq.) $[\mathrm{Pt}(\mathrm{dba})(\mathrm{dmso})]$ were dissolved in $3 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 20.7 mg ($0.068 \mathrm{mmol}, 1.00 \mathrm{eq}.) \mathrm{AsPh}_{3}$ were added. After 40 min , the solvent was removed and the crude product was purified via silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Yield: $34.3 \mathrm{mg}(0.044 \mathrm{mmol}, 65 \%)$ red solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta[\mathrm{ppm}]=8.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4), 7.92-7.84(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 15)$, 7.61 (d, $\left.{ }^{3}{ }^{3} \mathrm{H}, \mathrm{H}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5\right), 7.56\left(\mathrm{~d},{ }^{3} \mathrm{~J} \mathrm{H}, \mathrm{H}=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6\right), 7.53-7.47(\mathrm{~m}, 3 \mathrm{H}$, H16), 7.47-7.42 (m, 6H, H14), 7.37 (dd, Jн, Н $=7.9 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 12$), 7.06-7.00 (m, 2H, H11), 6.53 (dd, $\left.J_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}, 0.7 \mathrm{~Hz},{ }^{3} \mathrm{JPt}, \mathrm{H}=12.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 10\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta[\mathrm{ppm}]=162.5(\mathrm{C} 8), 155.6(\mathrm{C} 2), 147.4(\mathrm{C} 9), 135.7$ (C10),
 135.2 (C15), 134.6 (C4), 134.4 (C7), 133.2 (C11), 130.6 (C16), 130.5 (C13), 129.0 (C14), 128.7 (C5), 124.4 (C3), 122.9 (C6), 121.4 (C12). HR-ESI-MS(+): $\mathrm{m} / \mathrm{z}=778.09874$ ([M] ${ }^{+}$, calc.: $\mathrm{m} / \mathrm{z}=778.09806$).
[$\left.\mathbf{P t}(\mathbf{d b a})\left(\mathbf{S b P h}_{3}\right)\right] 31.0 \mathrm{mg}(0.060 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) [\mathrm{Pt}(\mathrm{dba})(\mathrm{dmso})$] were dissolved in $3 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 21.1 mg ($0.060 \mathrm{mmol}, 1.00 \mathrm{eq}$.) SbPh_{3} were added. After 45 min , the solvent was removed and the crude product was purified via silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Yield: $41.7 \mathrm{mg}(0.051 \mathrm{mmol}, 84 \%)$ red solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ [ppm] = $8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4), 7.86-7.80(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 15), 7.63\left(\mathrm{~d},{ }^{3}{ }^{3} \mathrm{H}, \mathrm{H}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5\right)$, 7.58 (d, $\left.{ }^{3}{ }^{\mathrm{J}}, \mathrm{H}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6\right), 7.54-7.49$ (m, 3H, H16), 7.48-7.43 (m, 6H, H14), 7.40 (dd, Jн, $\left.=6.2 \mathrm{~Hz}, 4.2 \mathrm{~Hz},{ }^{5} \mathrm{Jpt}, \mathrm{H}=15.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 12\right), 7.12-7.05(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 10$ and H11). ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=161.3$ (C8), $155.5(\mathrm{C} 2), 147.5$ (C9), 137.9 (C10), 136.5 (C15), 135.4 (C4), 134.8 (C7), 131.3 (C11), 130.5 (C16), 129.8 (C13), 129.2 (C14), 129.0 (C5), 124.6 (C3), 123.0 (C6), 121.6 (C12). HR-ESI-
 $\mathrm{MS}(+): \mathrm{m} / \mathrm{z}=824.08130([\mathrm{M}]+$, calc.: $\mathrm{m} / \mathrm{z}=824.08028)$.

Attempted synthesis of [Pt(dpp)($\left.\mathrm{BiPh}_{3}\right)$]

Time resolved NMR study. For in situ observation of the reaction of $[\mathrm{Pt}(\mathrm{dpp})(\mathrm{dmso})]$ with BiPh_{3}, the latter (0.75 eq.) was added to a solution of the Pt complex in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, and the sample was quickly transferred into a 600 MHz NMR spectrometer (see above for details on instrumentation). During the
first few minutes, ${ }^{1} \mathrm{H}$ NMR spectra were recorded in quick succession, but no change was detected between them. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta[\mathrm{ppm}]=7.68$ (d, Hcomplex), 7.65 (d, HBiiph $), 7.53$ (t, Hcomplex), 7.38 (dd, Hcomplex), 7.29 (t, НвiPh3), 7.23 (m, HBiPh3), 7.16 (td, Hcomplex), 7.01 (td, Hcomplex). For the following 12 h, spectra were recorded every 10 min . The integrals of the observed signals were normalised to a value of 2.00 for the signal at 7.38 ppm which belongs to $[\mathrm{Pt}(\mathrm{dpp})(\mathrm{dmso})]$. The integral of the well-isolated multiplet at 7.29 ppm belonging to BiPh_{3} decreased significantly over the timescale of the experiment from ca. 4.5 to ca. 3.8 (Fig. S21). The less well-isolated BiPh_{3} signals decreased in an approximately proportional manner.
MS analysis. A mixture of $[\mathrm{Pt}(\mathrm{dpp})(\mathrm{dmso})]\left(68.6 \mathrm{mg}, 0.137 \mathrm{mmol}, 1.0 \mathrm{eq}\right.$.) and $\mathrm{BiPh}_{3}(120.2 \mathrm{mg}, 0.273$ mmol , 2.0 eq.) in $4 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ was stirred at room temperature for 6 d . Precipitation of black solids was observed. The solids were removed by filtration and the filtrate was evaporated to dryness. EI-MS analysis of the residue detected a variety of fragments and coupling products, i.e. phenylated $\mathrm{H}_{2} \mathrm{dpp}$ derivatives, derived from the starting materials. $\mathrm{m} / \mathrm{z}=154.07748$ ([PhPy] ${ }^{+}$, calc.: 154.065674), 208.97958 ([Bi] ${ }^{+}$, calc.: 208.980399), 230.09628 ([Hdpp] ${ }^{+}$, calc.: 230.096974), 286.01876 ([PhBi] ${ }^{+}$, calc.: 286.019524), 306.12744 ([Hdpp-Ph] ${ }^{+}$, calc.: 306.128275), 382.15869 ([Ph-dpp-Ph] ${ }^{+}$, calc.: 382.159575), 458.19002 ([Ph2-dpp-Ph] ${ }^{+}$, calc.: 458.190875), 535.21646 ([Ph2-dpp-Ph2] ${ }^{+}$, calc.: 535.230000).

Supporting Figures

Fig. S1 $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S2 $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S3 $500 \mathrm{MHz}^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S4 $500 \mathrm{MHz}^{1} \mathrm{H},,^{13} \mathrm{C}$ HSQC of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S5 $500 \mathrm{MHz}^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S6 $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $[\mathrm{Pt}(\mathrm{dpp})(\mathrm{SbPh} 3)]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S7 $125 \mathrm{MHz}^{13} \mathrm{C}$ NMR of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S8 $500 \mathrm{MHz}{ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S9 $500 \mathrm{MHz}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HSQC of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S10 $500 \mathrm{MHz}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S11 $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

$\begin{array}{llllllllllllllll}180 & 175 & 170 & 165 & 160 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 \\ \text { chemical shift (ppm) }\end{array}$
Fig. S12 $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S13 $500 \mathrm{MHz}^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY of [Pt(dba)(AsPh3)] in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S14 $500 \mathrm{MHz}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HSQC of [$\left.\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S15 $500 \mathrm{MHz}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S16 $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S17 $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S18 $500 \mathrm{MHz}^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S19 $500 \mathrm{MHz}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HSQC of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S20 $500 \mathrm{MHz}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S21 $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra from in situ NMR observation of a mixture of $[\operatorname{Pt}(\mathrm{dpp})(\mathrm{dmso})]$ and BiPh_{3} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S22 Crystal structure (left) of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ viewed along the b axis and molecular structure (right) with 50% ellipsoids, H atoms omitted for clarity.

Fig. S23 Crystal structure (left) of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ viewed along the a axis and molecular structure (right) with 50% ellipsoids, H atoms omitted for clarity.

Fig. S24 Crystal structure (left) of $[\mathrm{Pt}(\mathrm{dba})(\mathrm{AsPh})] \cdot \mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{CHCl}_{3}$ viewed along the b axis and molecular structure of $\left[\mathrm{Pt}\left(\mathrm{dbaAsPh}_{3}\right]\right.$ (right) with 50% ellipsoids, H atoms and co-crystallised solvent molecules omitted for clarity.

Fig. S25 Crystal structure (left) of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right] \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$ viewed along the c axis and molecular structure of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ (right) with 50% ellipsoids, H atoms and co-crystallised solvent molecules omitted for clarity.

Fig. S26 Structures of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{BiPh}_{3}\right)\right]$ and $\left[\mathrm{Pt}\left(\mathrm{dba}_{\mathrm{d}}\right)\left(\mathrm{BiPh}_{3}\right)\right]$ from free (left) and constrained (middle and right) DFT geometry optimisations.

Fig. S27 Cyclic voltammograms of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{PPh}_{3}\right)\right]$ in $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6} / \mathrm{THF}$.

Fig. S28 Cyclic voltammograms of [Pt(dpp)(AsPh3)] in $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6} / \mathrm{THF}$.

Fig. S29 Cyclic voltammograms of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ in $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6} / \mathrm{THF}$.

Fig. S30 Cyclic voltammograms of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)\right]$ in $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6} / \mathrm{THF}$.

Fig. S31 Cyclic voltammograms of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$ in $0.1 \mathrm{M} n$ - $\mathrm{Bu}_{4} \mathrm{NPF}_{6} / \mathrm{THF}$.

Fig. S32 Cyclic voltammograms of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in $0.1 \mathrm{M} n$ - $\mathrm{Bu}_{4} \mathrm{NPF}_{6} / \mathrm{THF}$.

Fig. S33 Selected DFT-calculated frontier orbitals and energies for $[\mathrm{Pt}(\mathrm{dpp})(\mathrm{PnPh} 3)](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi})$.

Fig. S34 Selected DFT-calculated frontier orbitals and energies for $[\mathrm{Pt}(\mathrm{dba})(\mathrm{PnPh} 3)](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi})$.

Fig. S35 Experimental UV-vis absorption spectra of $\mathrm{H}_{2} \mathrm{dpp}$, and the complexes [$\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{PnPh}_{3}\right)$] $(\mathrm{Pn}=$ P, As, and Sb) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at 298 K .

Fig. S36 TD-DFT calculated (TPSSh/def2-TZVP/CPCM $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$) UV-vis absorption spectra of the complexes $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{PnPh}_{3}\right)\right](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi})$.

Fig. S37 Experimental UV-vis absorption spectra of $\mathrm{H}_{2} \mathrm{dba}$, and the complexes $[\mathrm{Pt}(\mathrm{dba})(\mathrm{PnPh} 3)](\mathrm{Pn}=\mathrm{P}$, As, and Sb) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at 298 K .

Fig. S38 TD-DFT-calculated (TPSSh/def2-TZVP/CPCM $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$) UV-vis absorption spectra of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PnPh}_{3}\right)\right](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi})$.

Fig. S39 UV-vis absorption spectra of $\left[\operatorname{Pt}\left(\mathrm{dpp}_{\mathrm{P}}\right)\left(\mathrm{AsPh}_{3}\right)\right]$ during anodic (left) and cathodic (right) electrolysis (spectroelectrochemistry) in $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ THF solution.

Fig. S40 UV-vis absorption spectra of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ during anodic (left) and cathodic (right) electrolysis (spectroelectrochemistry) in $0.1 \mathrm{M} n$-Bu4NPF6 THF solution.

Fig. S41 UV-vis absorption spectra of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$ during anodic (left) and cathodic (right) electrolysis (spectroelectrochemistry) in $0.1 \mathrm{M} n$-Bu4 ${ }^{2} \mathrm{NPF}_{6}$ THF solution.

Fig. S42 UV-vis absorption spectra of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ during anodic (left) and cathodic (right) electrolysis (spectroelectrochemistry) in $0.1 \mathrm{M} n$-Bu4NPF6 THF solution.

Fig. S43 Photoluminescence spectrum of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{PPh}_{3}\right)\right]$ at 77 K in a frozen glassy $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ matrix, $\lambda_{\text {exc }}=350 \mathrm{~nm}$.

Fig. S44 Photoluminescence spectrum of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ at 77 K in a frozen glassy $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ matrix, $\lambda_{\text {exc }}=350 \mathrm{~nm}$.

Fig. S45 Photoluminescence spectrum of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ at 77 K in a frozen glassy $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ matrix, $\lambda_{\text {exc }}=350 \mathrm{~nm}$.

Fig. S46 Photoluminescence spectra of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)\right]$ at 77 K in a frozen glassy $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ matrix (solid line) and in fluid $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at 298 K (dashed line) $\lambda_{\text {exc }}=350 \mathrm{~nm}$.

Fig. S47 Photoluminescence spectra of $[\mathrm{Pt}(\mathrm{dba})(\mathrm{AsPh} 3)]$ at 77 K in a frozen glassy $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ matrix (solid line) and in fluid $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at 298 K (dashed line), $\lambda_{\text {exc }}=350 \mathrm{~nm}$.

Fig. S48 Photoluminescence spectra of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ at 77 K in a frozen glassy $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ matrix (solid line) and in fluid $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at 298 K (dashed line), $\lambda_{\text {exc }}=350 \mathrm{~nm}$.

Fig. S49 Transient absorption spectra (TAS) at selected delay times (a-c) and decay associated spectra (d-f) for $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{PPh}_{3}\right)\right]$ (a and d$),\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]\left(\mathrm{b}\right.$ and e) and $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ (c and f) upon excitation at 340 nm in THF.

Fig. S50 TAS at selected delay times (a-c) and decay associated spectra (d-f) for [$\left.\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)\right]$ (a and d), $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$ (b and e) and $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ (c and f) upon excitation at 340 nm in THF.

Fig. S51 TAS at selected delay times (a-c) and decay associated spectra (d-f) for $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)\right]$ (a and d), $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$ (b and e) and $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ (c and f) upon excitation at 500 nm in THF.

Parameter	Value	Δ	δ
$\mathrm{A}_{1}[\mathrm{kCnts} / \mathrm{Chnl}]$	5.69	± 0.54	9.4%
$\mathrm{~T}_{1}[\mathrm{~ns}]$	14490	± 220	1.5%
$\mathrm{I}_{1}[\mathrm{kCnts}]$	10310	± 810	7.8%
$\mathrm{~A}_{\text {Rel1 }}[\%]$	61.7	± 5.8	9.3%
$\mathrm{I}_{\text {Rel1 }}[\%]$	70.3	± 5.5	7.8%
$\mathrm{~A}_{2}[\mathrm{kCnts} / \mathrm{Chnl}]$	3.55	± 0.53	15%
$\mathrm{~T}_{2}[\mathrm{~ns}]$	9860	± 420	4.2%
$\mathrm{I}_{2}[\mathrm{kCnts}]$	4370	± 810	19%
$\mathrm{~A}_{\text {Rel2 }}[\%]$	38.4	± 5.8	15%
$\mathrm{I}_{\text {Rel2 }}[\%]$	29.8	± 5.5	18%
$\mathrm{Bkgr}_{\text {Dec }}[\mathrm{kCnts}]$	0.0052	± 0.0003	5.1%
$\mathrm{~T}_{\text {Avintins }}[\mathrm{ns}]$	13107	± 13	0.1%
$\mathrm{~T}_{\text {AvAmp }}[\mathrm{ns}]$	12709	± 13	0.1%

Fig. S52 Left: Raw (experimental) time-resolved photoluminescence decay of [$\mathrm{Pt}(\mathrm{dpp})(\mathrm{PPh} 3)]$ in a frozen $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ glassy matrix at 77 K including the residuals ($\lambda_{\mathrm{ex}}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=510 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S53 Left: Raw (experimental) time-resolved photoluminescence decay of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$ in a frozen $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ glassy matrix at 77 K including the residuals ($\lambda_{\mathrm{ex}}=376 \mathrm{~nm}$, $\lambda_{\mathrm{em}}=515 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Δ	δ
$\mathrm{A}_{1}[\mathrm{kCnts} / \mathrm{Chnl}]$	3.13	± 0.31	9.7\%
$\mathrm{T}_{1}[\mathrm{~ns}$]	14210	± 240	1.7\%
$\mathrm{l}_{1}[\mathrm{kCnts}]$	5550	± 460	8.2\%
$A_{\text {Rell }}$ [\%]	35.9	± 3.5	9.7\%
$\mathrm{I}_{\text {Rel1 }}[\%]$	44.0	± 3.7	8.2\%
$\mathrm{A}_{2}[\mathrm{kCnts} / \mathrm{Chnl}]$	5.60	± 0.30	5.3\%
$\mathrm{T}_{2}[\mathrm{~ns}]$	10130	± 110	1.1\%
$\mathrm{I}_{2}[\mathrm{kCnts}$]	7080	± 460	6.5\%
$A_{\text {Rel2[}}$ [\%]	64.2	± 3.5	5.4\%
IRe12[\%]	56.1	± 3.7	6.4\%
Bkgr ${ }_{\text {Dec }}[\mathrm{kCnts}$]	0.0051	± 0.0002	3.3\%
TAvin![ns]	11916	± 13	0.1\%
TAvAmp[ns]	11584.9	± 7.0	0.1\%

Fig. S54 Left: Raw (experimental) time-resolved photoluminescence decay of $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$ in a frozen $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ glassy matrix at 77 K including the residuals ($\lambda_{\mathrm{ex}}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=515 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Δ	δ
$\mathrm{A}_{1}[\mathrm{kCnts} / \mathrm{Chnl}]$	7.33	± 0.40	5.3\%
T_{1} [ns]	25620	± 520	2.0\%
I_{1} [kCnts]	5870	± 430	7.3\%
$A_{\text {Rell }}$ [\%]	86.8	± 4.8	5.4\%
$\mathrm{I}_{\text {Rel1 }}$ [\%]	79.7	± 5.7	7.1\%
$\mathrm{A}_{2}[\mathrm{kCnts} / \mathrm{Chnl}]$	1.13	± 0.41	36\%
T_{2} [ns]	42900	± 3200	7.4\%
I_{2} [kCnts]	1510	± 420	28\%
ARel2[\%]	13.3	± 4.8	36\%
$\mathrm{I}_{\text {Rel2 }}$ [\%]	20.4	± 5.7	28\%
Bkgr ${ }_{\text {dec }}[\mathrm{kCnts}$]	0.0051	± 0.0006	11\%
TAvin![ns]	29128	± 65	0.2\%
TAvAmp[ns]	27905	± 64	0.2\%

Fig. S55 Left: Raw (experimental) time-resolved photoluminescence decay of [$\mathrm{Pt}(\mathrm{dba})(\mathrm{PPh} 3)]$ in a frozen $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ glassy matrix at 77 K including the residuals ($\lambda_{\mathrm{ex}}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=575 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Δ	δ
$\mathrm{A}_{1}[\mathrm{kCnts} / \mathrm{Chnl}]$	8.868	± 0.090	1.0\%
T_{1} [ns]	22590	± 160	0.7\%
I_{1} [kCnts]	6260	± 110	1.7\%
$A_{\text {Rell }}$ [\%]	95.9	± 1.1	1.1\%
$\mathrm{I}_{\text {Rel1 }}[\%]$	91.3	± 1.5	1.6\%
$\mathrm{A}_{2}[\mathrm{kCnts} / \mathrm{Chnl}]$	0.382	± 0.099	26\%
$\mathrm{T}_{2}[\mathrm{~ns}$]	50400	± 6500	13\%
$\mathrm{I}_{2}[\mathrm{kCnts}$]	600	± 98	16\%
$A_{\text {Reli }}[\%]$	4.2	± 1.1	26\%
$\mathrm{l}_{\text {Rel2 }}[\%]$	8.8	± 1.5	16\%
Bkgr ${ }_{\text {Dec }}[\mathrm{kCnts}$]	0.0131	± 0.0013	9.7\%
TAvins[ns]	25010	± 220	0.9\%
TAvAmp[ns]	23725	± 65	0.3\%

Fig. S56 Left: Raw (experimental) time-resolved photoluminescence decay of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$ in a frozen $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ glassy matrix at 77 K including the residuals ($\lambda_{\mathrm{ex}}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=575 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Δ	δ
$\mathrm{A}_{1}[\mathrm{kCnts} / \mathrm{Chnl}]$	9.1815	± 0.0100	0.1\%
T_{1} [ns]	21912	± 15	0.1\%
$\mathrm{I}_{1}[\mathrm{kCnts}$]	6286.9	± 3.4	0.1\%
$A_{\text {Rell }}[\%]$	100.0	---	--
$\mathrm{I}_{\text {Rel1 }}[\%$]	100.0	---	---
Bkgr ${ }_{\text {Dec }}[\mathrm{kCnts}$]	0.0069	± 0.0002	2.6\%
$\mathrm{T}_{\text {Avint[}}$ [ns]	21912	± 15	0.1\%
TAvAmp[ns]	21912	± 15	0.1\%

Fig. S57 Left: Raw (experimental) time-resolved photoluminescence decay of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in a frozen $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ glassy matrix at 77 K including the residuals ($\lambda_{\mathrm{ex}}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=575 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Δ	ठ
A_{1} [kCnts/Chnl]	1.492	± 0.015	0.9\%
$\mathrm{T}_{1}[\mathrm{~ns}]$	2352	± 19	0.8\%
I_{1} [kCnts]	438.4	± 1.7	0.4\%
$A_{\text {Rell }}$ [\%]	19.1	± 0.3	1.3\%
$\mathrm{I}_{\text {Rel1 }}$ [\%]	55.2	± 0.4	0.6\%
$\mathrm{A}_{2}[\mathrm{kCnts} / \mathrm{Chnl}]$	6.346	± 0.040	0.6\%
T_{2} [ns]	449.2	± 2.8	0.6\%
l_{2} [kCnts]	356.3	± 3.8	1.1\%
$A_{\text {Rel2 } 2 \%] ~}$	81.0	± 0.3	0.3\%
$\mathrm{I}_{\text {Rel2 }}$ [\%]	44.9	± 0.4	0.8\%
Bkgr ${ }_{\text {Dec }}[\mathrm{kCnts}$]	0.0067	± 0.0006	8.3\%
TAvın![ns]	1498.6	± 9.2	0.6\%
TAvAmp[ns]	811.2	± 4.3	0.5\%

Fig. S58 Left: Raw (experimental) time-resolved photoluminescence decay of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)\right]$ in fluid $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K including the residuals $\left(\lambda_{\mathrm{ex}}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=600 \mathrm{~nm}\right)$. Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Δ	ठ
$\mathrm{A}_{1}[\mathrm{kCnts} / \mathrm{Chnl}]$	8.739	± 0.013	0.1\%
$\mathrm{T}_{1}[\mathrm{~ns}]$	268.40	± 0.44	0.2\%
I_{1} [kCnts]	2345.5	± 3.9	0.2\%
$A_{\text {Rell }}$ [\%]	100.0	---	--
$\mathrm{I}_{\text {Rel1 }}[\%]$	100.0	---	---
Bkgr ${ }_{\text {Dec }}[\mathrm{kCnts}$]	0.0233	± 0.0006	2.3\%
$\mathrm{T}_{\text {Avint[}}$ [ns]	268.40	± 0.44	0.2\%
$\mathrm{T}_{\text {AvAmp }}[\mathrm{ns}$]	268.40	± 0.44	0.2\%

Fig. S59 Left: Raw (experimental) time-resolved photoluminescence decay of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$ in fluid $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K including the residuals ($\lambda_{\mathrm{ex}}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=600 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Δ	δ
$\mathrm{A}_{1}[\mathrm{kCnts} / \mathrm{Chnl}]$	7.9869	± 0.0097	0.1\%
T_{1} [ns]	469.23	± 0.45	0.1\%
l_{1} [kCnts]	3747.7	± 5.9	0.2\%
ARell[\%]	100.0	---	---
$\mathrm{I}_{\text {Rel1 }}[\%]$	100.0	--	--
Bkgr ${ }_{\text {dec }}[\mathrm{kCnts}$]	0.0190	± 0.0002	1.0\%
$T_{\text {Avint }}$ [ns]	469.23	± 0.45	0.1\%
$\mathrm{T}_{\text {AvAmp }}[\mathrm{ns}$]	469.23	± 0.45	0.1\%

Fig. S60 Left: Raw (experimental) time-resolved photoluminescence decay of $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$ in fluid $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K including the residuals ($\lambda_{\mathrm{ex}}=376 \mathrm{~nm}, \lambda_{\mathrm{em}}=600 \mathrm{~nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Supporting Tables

Table S1 Selected structure solution and refinement data for crystal structures containing $\left[\mathrm{Pt}\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right)\left(\mathrm{PnPh}_{3}\right)\right]\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}=\mathrm{dpp}, \mathrm{dba} ; \mathrm{Pn}=\mathrm{As}, \mathrm{Sb}\right)$.

compound	[$\mathrm{Pt}(\mathrm{dpp})(\mathrm{AsPh} 3)]$	$\begin{aligned} & {\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]} \\ & \cdot \mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{CHCl}_{3}{ }^{\mathrm{a}} \end{aligned}$	[$\mathrm{Pt}(\mathrm{dpp})(\mathrm{SbPh} 3)]$	$\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right] \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$
empirical formula	$\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{AsNPt}$	$\mathrm{C}_{44} \mathrm{H}_{37} \mathrm{Ascll}_{3} \mathrm{NOPt}$	$\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{SbNPt}$	$\mathrm{C}_{82} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{OSb}_{2} \mathrm{Pt}_{2}$
formula weight $(\mathrm{g} / \mathrm{mol})$	730.58	972.14	777.41	1725.10
temperature (K)	100(2)	109(2)	100(2)	100(2)
wavelength	Ag K α	Mo K α	Mo K ${ }_{\alpha}$	Mo K α
crystal system	monoclinic	monoclinic	triclinic	triclinic
space group	P2 $1 / \mathrm{C}$	C2/c	$P \overline{1}$	$P \overline{1}$
cell parameters				
$a(\AA)$	4.0056(6)	27.2312(16)	10.1552(6)	12.559(2)
b (\AA)	9.5784(4)	10.5042(5)	15.5531(9)	13.453(2)
$c(\AA)$	20.6896(9)	26.597(2)	17.832(1)	19.012(2)
$\alpha\left({ }^{\circ}\right)$	90	90	104.044(3)	99.710(4)
$\beta\left({ }^{\circ}\right)$	96.219(2)	118.864(2)	97.175(3)	97.164(4)
$\gamma\left({ }^{\circ}\right.$	90	90	90.067(2)	90.961(5)
$\mathrm{V}\left(\AA^{3}\right)$	2759.2(2)	6662.6(8)	2709.4(3)	3139.3(7)
Z	4	8	4	2
$\mu\left(\mathrm{mm}^{-1}\right)$	3.41	5.35	6.18	5.35
crystal size (mm^{3})	$0.06 \times 0.03 \times 0.03$	$0.1 \times 0.1 \times 0.1$	$0.15 \times 0.08 \times 0.02$	$0.3 \times 0.3 \times 0.2$
crystal colour/shape	yellow prism	red prism	orange prism	red prism
F(000)	1416	3412	1488	1668
2θ range $\left(^{\circ}\right.$)	1.9-22.0	3.0-30.5	2.0-30.2	2.0-28.3
index ranges				

$h_{\text {min }} / \max$ $\mathrm{k}_{\text {min }}$ /max $l_{\text {min } / \text { max }}$	$\begin{aligned} & \hline-18 / 18 \\ & -12 / 12 \\ & -27 / 27 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-38 / 38 \\ & -14 / 14 \\ & -37 / 37 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-14 / 14 \\ & -21 / 21 \\ & -25 / 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-16 / 16 \\ & -17 / 17 \\ & -25 / 25 \\ & \hline \end{aligned}$
reflections				
total independent	$\begin{aligned} & 52922 \\ & 6871 \end{aligned}$	$\begin{aligned} & 85756 \\ & 10116 \end{aligned}$	$\begin{aligned} & 153953 \\ & 15935 \\ & \hline \end{aligned}$	$\begin{aligned} & 146817 \\ & 15332 \end{aligned}$
completeness	99.9\%	99.9\%	99.9\%	99.9\%
data / restraints / parameters	6871 / 0 / 343	10116 / 0 / 457	15935 / 0 / 667	15332 / 0 / 804
GooF on F^{2}	1.06	1.02	1.10	1.08
final R values				
$\begin{array}{ll} \hline \mathrm{R}_{1} \quad(\mathrm{I} \geq 2 \sigma(\mathrm{I}) / \text { all } \\ \text { data) } \\ \mathrm{wR}_{2} & \\ \mathrm{R}_{\text {int }} & \\ \mathrm{R}_{\sigma} & \\ \hline \end{array}$	$\begin{aligned} & \hline 0.021 / 0.023 \\ & \\ & 0.050 \\ & 0.059 \\ & 0.031 \end{aligned}$	$\begin{aligned} & 0.020 / 0.022 \\ & 0.046 \\ & 0.046 \\ & 0.026 \end{aligned}$	$\begin{aligned} & \hline 0.075 / 0.090 \\ & \\ & 0.161 \\ & 0.083 \\ & 0.050 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.021 / 0.022 \\ & 0.051 \\ & 0.043 \\ & 0.024 \end{aligned}$
largest peak / hole (e/ \AA^{3})	1.07 / -0.80	0.63 / -0.66	3.75 / -6.41	$4.48^{\text {a }}$ / -1.17
CCDC	2149899	2194357	2257280	2208288

${ }^{\text {a }}$ Due to the disordered solvent molecules $\mathrm{Et}_{2} \mathrm{O}$ and CHCl_{3} occupying special positions with respect to the cell symmetry, the refinement of these molecules was impaired and the corresponding H atoms could not be added to the model using AFIX in all cases. The H atoms missing in the structure solution were nonetheless included in the calculation of the empirical formula and formula weight. ${ }^{\mathrm{b}}$ This residual electron density is localised in direct proximity to the $\mathrm{Et}_{2} \mathrm{O}$ molecule found in the structure and is attributed to its disorder which could not be explicitly refined.

Table S2 Selected structural data for $[\mathrm{Pt}(\mathrm{dpp})(\mathrm{PnPh} 3)](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb})$ from scXRD and DFT geometry optimisations of the S_{0} states. ${ }^{\text {a }}$

	$\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{PPh}_{3}\right)\right]$		$[\mathrm{Pt}(\mathrm{dpp})(\mathrm{AsPh} 3)]$	$\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$		
	$\mathrm{scXRD}{ }^{\text {a }}$	DFT	scXRD	DFT	$\operatorname{scXRD}{ }^{\mathrm{b}}$	DFT
distances $(\AA \AA)$						
Pt-N1	$2.026(6)$	2.042	$2.008(2)$	2.025	$2.01(1) / 2.03(1)$	2.022
Pt-C7	$2.065(6)$	2.090	$2.067(2)$	2.083	$2.08(1) / 2.08(1)$	2.081
Pt-C13	$2.080(6)$	2.090	$2.066(2)$	2.086	$2.07(1) / 2.06(1)$	2.076
Pt-Pn	$2.209(2)$	2.234	$2.321(1)$	2.351	$2.504(1) / 2.491(1)$	2.507
N1-C5	$1.347(8)$	1.358	$1.347(3)$	1.359	$1.35(1) / 1.36(1)$	1.359
N1-C1	$1.355(8)$	1.357	$1.353(3)$	1.360	$1.34(1) / 1.35(2)$	1.359
C5-C6	$1.466(9)$	1.468	$1.471(4)$	1.468	$1.48(2) / 1.47(2)$	1.469
C1-C12	$1.479(8)$	1.468	$1.474(4)$	1.468	$1.48(1) / 1.48(2)$	1.469
C6-C7	$1.427(9)$	1.434	$1.431(4)$	1.436	$1.43(2) / 1.44(1)$	1.436
C12-C13	$1.409(9)$	1.436	$1.423(4)$	1.434	$1.42(2) / 1.42(2)$	1.436
angles $\left.{ }^{\circ}\right)$						
C7-Pt-C13	$159.8(2)$	159.5	$161.0(1)$	160.5	$160.6(4) / 161.5(5)$	161.0
Pn-Pt-N1	$175.9(2)$	174.9	$175.8(1)$	176.3	$172.9(2) / 170.2(2)$	177.5
N1-Pt-C7	$80.3(2)$	79.9	$80.7(1)$	80.2	$80.4(4) / 81.0(4)$	80.5
N1-Pt-C13	$80.2(2)$	79.7	$80.9(1)$	80.3	$80.2(4) / 80.5(4)$	80.5
C7-Pt-Pn	$97.6(2)$	95.7	$101.4(7)$	103.3	$97.4(3) / 95.7(3)$	97.0
C13-Pt-Pn	$102.2(2)$	104.8	$97.3(1)$	96.1	$101.9(3) / 102.6(3)$	102.0
C-Pn-C averaged	$104.1(2)$	103.7	$103.7(1)$	102.7	$98.3(2) / 99.7(2)$	101.2
C-Pn-Pt averaged	$114.6(2)$	114.8	$114.9(1)$	115.6	$118.8(1) / 118.1(1)$	116.9
Sum of \wedge around Pt	360.3	360.1	360.3	359.9	$359.9 / 360.2$	360.0
dihedral angles $\left({ }^{\circ}\right)$						
C7-Pt-Pn-C18	$78.4(3)$	56.6	$97.3(1)$	62.4	$51.1(4) / 66.8(5)$	60.6
C13-Pt-Pn-C18	$97.8(3)$	121.6	$79.4(1)$	122.7	$127.4(4) / 115.6(6)$	122.2
N1-Pt-Pn-C18	$136.7(23)$	85.6	$143.2(8)$	68.9	$20(2) / 136(2)$	67.0
N1-C1-C12-C17	$2.9(6)$	2.7	$11.1(2)$	0.9	$7(1) / 4(1)$	0.2

N1-C5-C6-C11	$12.1(6)$	2.6	$2.3(2)$	1.2	$3(1) / 0.51(1)$	179.7

${ }^{\text {a }} \mathrm{scXRD}$ data for $\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{PPh}_{3}\right)\right]$ from ref. ${ }^{\text {b }}$ Data for two molecules in the unit cell.

Table S3 Selected structural data for $[\mathrm{Pt}(\mathrm{dba})(\mathrm{PnPh} 3)](\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb})$ from scXRD and DFT geometry optimisations of the S_{0} states. ${ }^{\text {a }}$

	[$\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)$]		[$\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)$]		[Pt(dba)(SbPh3)]	
	scXRD ${ }^{\text {a }}$	DFT	scXRD	DFT	scXRD ${ }^{\text {b }}$	DFT
distances (\AA)						
Pt-N1	2.003(4)	2.030	1.996(2)	2.014	1.996(2)/1.994(2)	2.010
Pt-C1	2.099(5)	2.117	2.086(2)	2.115	2.110(3)/2.100(3)	2.107
$\mathrm{Pt}-\mathrm{C} 18$	$2.106(5)$	2.122	2.101(2)	2.114	2.092(3)/2.098(3)	2.110
$\mathrm{Pt}-\mathrm{Pn}$	2.230(2)	2.232	2.335(1)	2.349	2.487(1)/2.493(1)	2.505
N1-C13	1.333(5)	1.340	1.334(3)	1.341	1.337(3)/1.332(3)	1.340
N1-C10	1.338(7)	1.339	1.335(3)	1.341	1.339(3)/1.340(3)	1.340
C13-C17	1.420(8)	1.426	1.428(4)	1.425	1.429(4)/1.425(3)	1.426
C10-C6	1.440(6)	1.426	1.421(3)	1.426	1.423(3)/1.425(4)	1.425
C17-C18	1.439(6)	1.440	1.448(3)	1.440	1.434(3)/1.432(3)	1.440
C6-C1	1.431(7)	1.438	1.432(3)	1.438	1.440(3)/1.435(4)	1.440
C7-C8	1.363(7)	1.373	1.356(3)	1.373	1.357(4)/1.365(4)	1.373
C14-C15	1.354(8)	1.373	1.361(4)	1.373	1.361(4)/1.359(4)	1.373
angles (${ }^{\circ}$)						
C1-Pt-C18	158.6(2)	158.1	159.6(1)	158.1	159.5(1)/159.3(1)	159.4
$\mathrm{Pn}-\mathrm{Pt}-\mathrm{N} 1$	176.2(1)	175.8	176.5(1)	177.1	174.0(1)/177.3(1)	178.1
N1-Pt-C1	79.5(2)	79.2	80.1(1)	79.5	79.6(1)/79.8(1)	79.7
N1-Pt-C18	79.2(2)	79.0	79.6(1)	79.4	80.0(1)/79.5(1)	79.7
$\mathrm{C} 1-\mathrm{Pt}-\mathrm{Pn}$	96.8(1)	96.7	96.5(1)	97.7	102.9(1)/99.6(1)	102.2
C18-Pt-Pn	104.5(1)	105.1	103.8(1)	103.4	97.6(1)/101.1(1)	98.4
$\mathrm{C}-\mathrm{Pn}-\mathrm{C}$ averaged	104.3(1)	104.0	103.5(1)	103.0	102.5(1)/99.8(1)	101.5
$\mathrm{C}-\mathrm{Pn}-\mathrm{Pt}$ averaged	114.4(1)	114.5	114.9(1)	115.4	115.8(1)/118.2(1)	116.6
Sum of \wedge around Pt	360.0	360.0	360.0	360.0	360.1/360.0	360.0
dihedral angles (${ }^{\circ}$)						
C1-Pt-Pn-C28	169.7(2)	174.0	69.9(1)	62.9	128.9(1)/170.0(1)	119.1
C18-Pt-Pn-C28	12.1(2)	4.4	108.6(1)	117.7	49.4(1)/10.9(1)	60.8
N1-Pt-Pn-C28	5.6(17)	8.9	73.5(9)	49.8	15.5(6)/112.0(1)	47.1
N1-C10-C6-C5	1.0(4)	1.1	1.7(2)	0.6	0.6(3)/1.2(2)	0.0
N1-C13-C17-C16	2.5(4)	1.3	0.2(2)	0.5	1.8(2)/0.8(2)	0.2
N1-C10-C9-C8	1.3(4)	0.5	0.5(2)	0.2	0.4(2)/0.4(2)	0.0
N1-C13-C12-C14	0.1(4)	0.6	0.3(2)	0.2	0.4(2)/1.5(2)	0.0
C14-C12-C11-C9	0.5(5)	0.9	0.1(2)	0.4	0.5(2)/0.9(3)	0.0

${ }^{\text {a }}$ Data for $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)\right]$ from ref.2. ${ }^{\mathrm{b}}$ Data for two molecules in the unit cell.
 geometry optimizations of the T_{1} states.

	dpp				dba		
	P	As	Sb		P	As	Sb
distances (\AA)				distances (\AA)			
Pt -N1	2.033	2.021	2.025	Pt-N1	2.020	2.009	2.005
Pt -C7	2.060	2.054	2.051	Pt -C1	2.084	2.081	2.081
Pt-C13	2.054	2.050	2.049	Pt -C18	2.093	2.086	2.080
$\mathrm{Pt}-\mathrm{Pn}$	2.259	2.373	2.531	$\mathrm{Pt}-\mathrm{Pn}$	2.255	2.368	2.524
N1-C5	1.378	1.380	1.379	N1-C10	1.357	1.358	1.357
N1-C1	1.379	1.381	1.380	N1-C13	1.357	1.357	1.357
C5-C6	1.448	1.448	1.449	C13-C17	1.402	1.402	1.403
C1-C12	1.448	1.448	1.449	C10-C6	1.403	1.403	1.403
C6-C7	1.440	1.440	1.440	C17-C18	1.449	1.449	1.450

$\mathrm{C} 12-\mathrm{C} 13$	1.439	1.440	1.440	$\mathrm{C} 6-\mathrm{C} 1$	1.447	1.447	1.450
angles $\left({ }^{\circ}\right)$				$\mathrm{C} 7-\mathrm{C} 8$	1.385	1.386	1.386
$\mathrm{C} 7-\mathrm{Pt}-\mathrm{C} 13$	145.4	146.5	147.4	$\mathrm{C} 14-\mathrm{C} 15$	1.386	1.386	1.386
$\mathrm{Pn}-\mathrm{Pt}-\mathrm{N} 1$	174.2	174.5	174.4	angles $\left(^{\circ}\right)$			
$\mathrm{N} 1-\mathrm{Pt}-\mathrm{C} 7$	79.1	79.5	79.7	C1-Pt-C18	152.3	153.2	154.9
$\mathrm{~N} 1-\mathrm{Pt}-\mathrm{C} 13$	79.3	79.7	79.8	Pn-Pt-N1	176.6	177.1	178.1
$\mathrm{C} 7-\mathrm{Pt}-\mathrm{Pn}$	103.9	103.3	103.1	N1-Pt-C1	78.9	79.2	79.4
$\mathrm{C} 13-\mathrm{Pt}-\mathrm{Pn}$	100.3	99.8	99.7	N1-Pt-C18	78.6	79.0	79.3
C-Pn-C averaged	104.1	103.0	101.3	C1-Pt-Pn	98.3	98.2	98.7
C-Pn-Pt averaged	114.5	115.3	116.7	C18-Pt-Pn	104.6	103.8	102.6
Sum of \wedge around Pt	362.6	362.3	362.3	C-Pn-C averaged	104.1	103.1	101.4
dihedral angles $\left({ }^{\circ}\right)$				C-Pn-Pt averaged	114.4	115.3	116.6
C8-C7-Pt-C13	121.3	122.2	124.3	Sum of \wedge around Pt	360.4	360.2	360.0
C7-Pt-C13-C14	123.0	123.1	124.4	dihedral angles $\left({ }^{\circ}\right)$			
N1-C1-C12-C17	173.5	173.1	172.2	N1-C10-C6-C5	180.0	179.8	179.5
N1-C5-C6-C11	173.8	173.3	172.2	N1-C13-C17-C16	179.5	179.9	179.6
				N1-C10-C9-C8	178.7	178.6	178.6
				N1-C13-C12-C14	179.0	178.8	178.7
			C14-C12-C11-C9	175.6	174.7	175.5	

Table S5 Selected structural data for $\left[\operatorname{Pt}\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right)\left(\mathrm{BiPh}_{3}\right)\right]\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}=\mathrm{dpp}\right.$, dba) from DFT geometry optimisations of the S_{0} state.

	[Pt(dpp)(BiPh3)]			[Pt(dba)(BiPh3)]
	free	constrained		constrained
distances (\AA)			distances (\AA)	
Pt-N1	2.065	2.004	Pt-N1	1.997
Pt-C7	2.080	2.076	$\mathrm{Pt}-\mathrm{C} 1$	2.101
Pt-C13	2.102	2.065	$\mathrm{Pt}-\mathrm{C} 18$	2.103
$\mathrm{Pt}-\mathrm{Bi}$	2.722	2.602	$\mathrm{Pt}-\mathrm{Bi}$	2.599
$\mathrm{Pt}-\mathrm{CPh}^{\text {l }}$	2.016	-		
N1-C5	1.356	1.360	N1-C13	1.342
N1-C1	1.354	1.362	N1-C10	1.343
C5-C6	1.471	1.469	C13-C17	1.425
C1-C12	1.474	1.467	C10-C6	1.424
C6-C7	1.434	1.435	C17-C18	1.439
C12-C13	1.435	1.436	C6-C1	1.438
			C7-C8	1.374
			C14-C15	1.373
angles (${ }^{\circ}$)			angles (${ }^{\circ}$)	
C7-Pt-C13	159.6	161.9	C1-Pt-C18	160.26
Bi-Pt-N1	87.6	175.8	Bi-Pt-N1	169.1
N1-Pt-C7	80.1	81.0	N1-Pt-C1	80.2
N1-Pt-C13	79.6	80.9	N1-Pt-C18	80.1
C7-Pt-Bi	101.1	98.3	C1-Pt-Bi	96.6
C13-Pt-Bi	79.7	99.8	$\mathrm{C} 18-\mathrm{Pt}-\mathrm{Bi}$	102.4
N1-Pt-CPh	175.7	-	C-Bi-C averaged	100.1
C7-Pt-Cph	98.5	-	$\mathrm{C}-\mathrm{Bi}-\mathrm{Pt}$ averaged	117.7
C18-Pt-CPh	101.6	-		-
$\mathrm{Bi}-\mathrm{Pt}-\mathrm{Cph}$	96.7	-		-
C-Bi-C averaged	-	99.9		
$\mathrm{C}-\mathrm{Bi}-\mathrm{Pt}$ averaged	-	117.9		
Sum of \wedge around Pt	-	360.0	Sum of \wedge around Pt	359.3
dihedral angles (${ }^{\circ}$)			dihedral angles (${ }^{\circ}$)	
C7-Pt-Bi-C18	21.3	56.0	C1-Pt-Bi-C22	65.0

C13-Pt-Bi-C18	0.6	125.2	C18-Pt-Bi-C22	120.3
N1-Pt-Bi-C18	100.7	44.4	N1-Pt-Bi-C22	42.4
N1-C1-C12-C17	1.9	3.3	N1-C10-C6-C5	5.5
N1-C5-C6-C11	1.7	0.8	N1-C13-C17-C16	0.4
			N1-C10-C9-C8	5.5
			N1-C13-C12-C14	0.9
			C14-C12-C11-C9	3.1

Table S6 Electrochemical data for the ligands $\mathrm{H}_{2} \mathrm{dpp}$ and $\mathrm{H}_{2} \mathrm{dba}$ and the complexes $\left[\mathrm{Pt}\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right)\left(\mathrm{PnPh}_{3}\right)\right]$ ($\mathrm{Pn}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}$). ${ }^{\mathrm{a}}$

	Red3 $E_{\mathrm{p}}(\mathrm{V})$	Red2 $E_{\mathrm{p}}(\mathrm{V})$	Red1 $E_{1 / 2}(\mathrm{~V})$	Ox1 $E_{\mathrm{p}}(\mathrm{V})$	Δ Red1-Red2	Δ Red1-Ox1
$\mathrm{H}_{2} \mathrm{dpp}$	-		-2.85	-		-
$\left[\mathrm{Pt}\left(\mathrm{dpp}^{2}\right)\left(\mathrm{PPh}_{3}\right)\right]$	-	-2.96	-2.36	0.65	0.60	3.01
$\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$	-	-2.97	-2.36	0.56	0.61	2.92
$\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$	-3.36	-2.67	-2.26	0.61	0.41	2.87
$\mathrm{H}_{2} \mathrm{dba}$	-	-2.96	-2.31	-	0.65	-
$\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)\right]$	-3.26	-2.70	-2.00	0.72	0.70	2.72
$\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{AsPh}_{3}\right)\right]$	-3.37	-2.68	-1.95	0.73	0.73	2.68
$\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{SbPh}_{3}\right)\right]$	-3.28	-2.31^{b}	-1.91	0.71	0.40	2.62

${ }^{\text {a }}$ Measured in $0.1 \mathrm{M} n \mathrm{Bu}_{4} \mathrm{NPF}_{6} \mathrm{THF}$ solution at a scan rate of $50 \mathrm{mV} / \mathrm{s}$. Potentials $E(\mathrm{~V})$ referenced against the $\mathrm{FeCp} 2 / \mathrm{FeCp}_{2}{ }^{+}$redox pair, accuracy of potentials: $\pm 0.003 \mathrm{~V}$. $E_{1 / 2}$: half-wave potential for reversible processes, E_{p} : peak potential for irreversible processes. ${ }^{\mathrm{b}}$ Reversible, $E_{1 / 2}$ given.

Table S7 UV-vis absorption data of the ligand $\mathrm{H}_{2} \mathrm{dpp}$ and the complexes $[\mathrm{Pt}(\mathrm{dpp})(\mathrm{PnPh} 3)](\mathrm{Pn}=\mathrm{P}, \mathrm{As}$, Sb). ${ }^{a}$

	$\lambda_{1}(\varepsilon)$	$\lambda_{2}(\varepsilon)$	$\lambda_{3}(\varepsilon)$	$\lambda_{4}(\varepsilon)$	$\lambda_{5}(\varepsilon)$
$\mathrm{H}_{2} \mathrm{dpp}$	$244(27.2)$	$286(11.1)$	$302(10.8)$	-	-
$\left[\mathrm{Pt}\left(\mathrm{dpp}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right]$	$252(38.4)$	$267(34.3)$	$278(34.8)$	$336(13.8)$	$349(15.7)$
$\left[\mathrm{Pt}(\mathrm{dpp})\left(\mathrm{AsPh}_{3}\right)\right]$	$252(35.4)$	$265(32.7)$	$281(31.9)$	$339(12.2)$	$352(14.7)$
$\left[\operatorname{Pt}(\mathrm{dpp})\left(\mathrm{SbPh}_{3}\right)\right]$	$253(36.7)$	$267(34.9)$	$282(31.7)$	$340(12.9)$	$354(15.5)$

${ }^{\text {a }}$ Absorption maxima λ_{n} in nm in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, molar absorption coefficient in $10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

Table S8 UV-vis absorption data of the ligand $\mathrm{H}_{2} \mathrm{dba}$ and the complexes $\left[\mathrm{Pt}(\mathrm{dba})\left(\mathrm{PnPh}_{3}\right)\right](\mathrm{Pn}=\mathrm{P}, \mathrm{As}$, Sb). ${ }^{\text {a }}$

	$\lambda_{1}(\varepsilon)$	$\lambda_{2}(\varepsilon)$	$\lambda_{3}(\varepsilon)$	$\lambda_{4}(\varepsilon)$	$\lambda_{5}(\varepsilon)$	$\lambda_{6}(\varepsilon)$	$\lambda_{7}(\varepsilon)$	$\lambda_{8}(\varepsilon)$
$\mathrm{H}_{2} \mathrm{dba}$	289	303	339	355	374	394		
	(8.2)	(7.6)	(1.6)	(1.1)	(1.3)	(1.8)	-	-
[Pt(dba)(PPh3)]	286	296	333	348	387	409	499	533
	(50.0)	(50.0)	(11.6)	(12.8)	(6.0)	(6.2)	(1.7)	(2.2)
[\mathrm{Pt}(\mathrm{dba}^{2})(\mathrm{AsPh}_{3})]{}	285	296	333	354	390	412	505	539
	(48.4)	(45.1)	(10.8)	(12.7)	(6.1)	(6.4)	(1.8)	(1.9)
[\mathrm{Pt}(\mathrm{dba})(\mathrm{SbPh}_{3})]{}	286	296	335	351	392	416	511	546
	(46.7)	(41.6)	(10.5)	(13.1)	(5.7)	(6.6)	(1.2)	(1.7)

${ }^{a}$ Absorption maxima λ_{n} in nm in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, molar absorption coefficient in $10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

References

1. A. Kergreis, R. M. Lord and S. J. Pike, Influence of ligand and nuclearity on the cytotoxicity of cyclometallated $\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}$ platinum(II) complexes, Chem.-Eur. J., 2020, 26, 14938-14946. DOI: 10.1002/chem. 202002517
2. J. N. Friedel, M. Krause, R. Jordan, I. Maisuls, D. Bruenink, D. Schwab, N. L. Doltsinis, C. A. Strassert and A. Klein, Triplet Emitting $\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}$ Cyclometalated Dibenzo[c,h]Acridine $\operatorname{Pt}(\mathrm{II})$ Complexes, Molecules, 2022, 27, 8054. DOI: 10.3390/molecules27228054
3. R. Siebert, D. Akimov, M. Schmitt, A. Winter, U.S. Schubert, B. Dietzek, J. Popp, Spectroscopic Investigation of the Ultrafast Photoinduced Dynamics in π-Conjugated Terpyridines, ChemPhysChem., 2009, 10, 910-919, DOI: 10.1002/cphc. 200800847
4. C. Müller, T. Pascher, A. Eriksson, P. Chabera, J. Uhlig, KiMoPack: A python Package for Kinetic Modeling of the Chemical Mechanism, J. Phys. Chem. A, 2022, 126, 4087-4099, DOI: 10.1021/acs.jpca.2c00907
5. APEX4 - Software Suite for Crystallographic Programs; Bruker AXS, Inc.: Madison, WI, USA, 2021.
6. G. M. Sheldrick, A short history of SHELX, Acta Crystallogr. A - Found. Crystallograph., 2008, 64, 112-122. DOI: 10.1107/S0108767307043930
7. G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. C-Struct. Chem., 2015, 71, 3-8. DOI: 10.1107/S2053229614024218
8. C. B. Hübschle, G. M. Sheldrick, B. Dittrich, ShelXle: a Qt graphical user interface for SHELXL, J. Appl. Crystallogr., 2011, 44, 1281-1284. DOI: 10.1107/S0021889811043202
9. F. Neese, F. Wennmohs, U. Becker und C. Riplinger, J. Chem. Phys., 2020, 152, 224108. DOI: 10.1063/5.0004608.
10. F. Neese, The ORCA quantum chemistry program package, WIREs Comput Mol Sci., 2022, 12, e1606. DOI: 10.1002/wcms. 1606
11. F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys., 2005, 7, 3297. DOI: 10.1039/b508541a
12. A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 1988, 38, 3098-3100. DOI: 10.1103/PhysRevA.38.3098
13. J. P. Perdew and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys. Rev. B, 1986, 33, 8800-8802. DOI: 10.1103/PhysRevB. 33.8800
14. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 2010, 132, 154104. DOI: 10.1063/1.3382344
15. S. Grimme, S. Ehrlich and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem., 2011, 2011, 1456-1465. DOI: 10.1002/jcc. 21759
16. V. Barone and M. Cossi, Effect of the damping function in dispersion corrected density functional theory, J. Phys. Chem. A, 1998, 102, 1995-2001. DOI: 10.1021/jp9716997
17. M. Cossi, N. Rega, G. Scalmani and V. Barone, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comput. Chem., 2003, 24, 669-681. DOI: 10.1002/jcc. 10189
18. J. Tao, J. P. Perdew, V. N. Stavoverov and G. E. Scuseria, Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids, Phys. Rev. Lett., 2003, 91, 146401. DOI: 10.1103/PhysRevLett.91.146401
19. Chemcraft - graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com.
20. F. Plasser, TheoDORE: A toolbox for a detailed and automated analysis of electronic excited state computations, J. Chem. Phys., 2020, 152, 084108. DOI: 10.1063/1.5143076
21. E. van Lenthe, J. G. Snijders and E. J. Baerends, The zero-order regular approximation for relativistic effects: The effect of spin-orbit coupling in closed shell molecules, J. Chem. Phys., 1996, 105, 6505-6516. DOI: 10.1063/1.472460
22. D. A. Pantazis, X.-Y. Chen, C. R. Landis and F. Neese, All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms, J. Chem. Theory Comput., 2008, 4, 908-919. DOI: 10.1021/ct800047t
23. J. D. Rolfes, F. Neese and D. A. Pantazis, All-electron scalar relativistic basis sets for the elements Rb-Xe, J. Comput. Chem., 2020, 41, 1842-1849. DOI: 10.1002/jcc. 26355
