Electronic supplementary information (ESI)

for

Enhanced luminescence properties through heavy ancillary ligands in $[Pt(C^N^C)(L)]$ complexes, $L = AsPh_3$ and $SbPh_3$

Rose Jordan,^a Iván Maisuls,^b Shruthi S. Nair^{c,d}, Benjamin Dietzek-Ivanšić,^{*,c,d} Cristian. A. Strassert^{*,b} and Axel Klein^{*,a}

^a University of Cologne, Faculty for Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, Greinstrasse 6, D-50939 Köln, Germany.

^b Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, CiMIC, CeNTech, Heisenbergstraße 11, D-48149 Münster, Germany.

^c Friedrich Schiller University Jena, Institute for Physical Chemistry (IPC), Helmholtzweg 4, 07743 Jena, Germany. ^d Leibniz Institute for Photonic Technologies Jena (IPHT) Albert-Einstein-Str. 9, 07745 Jena, Germany.

Contents

Experimental Section

Syntheses

Supporting Figures

Fig. S1 600 MHz ¹H NMR of [Pt(dpp)(AsPh₃)] in CD₂Cl₂. Fig. S2 125 MHz ¹³C NMR of [Pt(dpp)(AsPh₃)] in CD₂Cl₂. Fig. S3 500 MHz 1H, 1H COSY of [Pt(dpp)(AsPh3)] in CD2Cl2. Fig. S4 500 MHz ¹H, ¹³C HSQC of [Pt(dpp)(AsPh₃)] in CD₂Cl₂. Fig. S5 500 MHz ¹H,¹³C HMBC of [Pt(dpp)(AsPh₃)] in CD₂Cl₂. Fig. S6 600 MHz ¹H NMR of [Pt(dpp)(SbPh₃)] in CD₂Cl₂. Fig. S7 125 MHz ¹³C NMR of [Pt(dpp)(SbPh₃)] in CD₂Cl₂. Fig. S8 500 MHz 1H,1H COSY of [Pt(dpp)(SbPh3)] in CD2Cl2. Fig. S9 500 MHz ¹H, ¹³C HSQC of [Pt(dpp)(SbPh₃)] in CD₂Cl₂. Fig. S10 500 MHz ¹H, ¹³C HMBC of [Pt(dpp)(SbPh₃)] in CD₂Cl₂. Fig. S11 500 MHz ¹H NMR of [Pt(dba)(AsPh₃)] in CD₂Cl₂. Fig. S12 125 MHz ¹³C NMR of [Pt(dba)(AsPh₃)] in CD₂Cl₂. Fig. S13 500 MHz ¹H, ¹H COSY of [Pt(dba)(AsPh₃)] in CD₂Cl₂. Fig. S14 500 MHz ¹H, ¹³C HSQC of [Pt(dba)(AsPh₃)] in CD₂Cl₂. Fig. S15 500 MHz ¹H, ¹³C HMBC of [Pt(dba)(AsPh₃)] in CD₂Cl₂. Fig. S16 500 MHz ¹H NMR of [Pt(dba)(SbPh₃)] in CD₂Cl₂. Fig. S17 125 MHz ¹³C NMR of [Pt(dba)(SbPh₃)] in CD₂Cl₂. Fig. S18 500 MHz 1H,1H COSY of [Pt(dba)(SbPh3)] in CD2Cl2. Fig. S19 500 MHz ¹H, ¹³C HSQC of [Pt(dba)(SbPh₃)] in CD₂Cl₂. Fig. S20 500 MHz ¹H, ¹³C HMBC of [Pt(dba)(SbPh₃)] in CD₂Cl₂. Fig. S21 600 MHz ¹H NMR spectra from in situ NMR observation of a mixture of [Pt(dpp)(dmso)] and BiPh₃. Fig. S22 Crystal structure of [Pt(dpp)(AsPh₃)] viewed along the *b* axis and molecular structure. **Fig. S23** Crystal structure of [Pt(dpp)(SbPh₃)] viewed along the *a* axis and molecular structure. Fig. S24 Crystal structure of [Pt(dba)(AsPh₃)]·Et₂O·CHCl₃ viewed along the *b* axis and molecular structure. Fig. S25 Crystal structure of [Pt(dba)(SbPh₃)]·0.5Et₂O viewed along the *c* axis and molecular structure. Fig. S26. Structures of [Pt(dpp)(BiPh₃)] and [Pt(dba)(BiPh₃)] from free and constrained DFT geometry optimisations. Fig. S27 Cyclic voltammograms of [Pt(dpp)(PPh₃)] in 0.1 M nBu₄NPF₆/THF. Fig. S28 Cyclic voltammograms of [Pt(dpp)(AsPh₃)] in 0.1 M nBu₄NPF₆/THF. Fig. S29 Cyclic voltammograms of [Pt(dpp)(SbPh₃)] in 0.1 M nBu₄NPF₆/THF. Fig. S30 Cyclic voltammograms of [Pt(dba)(PPh₃)] in 0.1 M nBu₄NPF₆/THF. Fig. S31 Cyclic voltammograms of [Pt(dba)(AsPh3)] in 0.1 M nBu4NPF6/THF. Fig. S32 Cyclic voltammograms of [Pt(dba)(SbPh3)] in 0.1 M nBu4NPF6/THF. Fig. S33 Selected DFT-calculated frontier orbitals and energies for [Pt(dpp)(PnPh₃)] (Pn = P, As, Sb, Bi). Fig. S34 Selected DFT-calculated frontier orbitals and energies for [Pt(dba)(PnPh₃)] (Pn = P, As, Sb, Bi). Fig. S35 Experimental UV-vis absorption spectra of H2dpp and the complexes [Pt(dpp)(PnPh3)] (Pn = P, As, Sb). Fig. S36 TD-DFT calculated UV-vis absorption spectra of the complexes [Pt(dpp)(PnPh₃)] (Pn = P, As, Sb, Bi).

Fig. S37 Experimental UV-vis absorption spectra of H2dba and the complexes [Pt(dba)(PnPh3)] (Pn = P, As, Sb).

Fig. S38 TD-DFT-calculated UV-vis absorption spectra of the complexes [Pt(dba)(PnPh₃)] (Pn = P, As, Sb, Bi).

 $\label{eq:Fig. S39} Fig. S39 \ UV-v is absorption \ spectra \ of \ [Pt(dpp)(AsPh_3)] \ during \ anodic \ and \ cathodic \ spectroelectrochemistry.$

 $\label{eq:Fig. S40 UV-vis absorption spectra of [Pt(dpp)(SbPh_3)] during anodic and cathodic spectroelectrochemistry.$

Fig. S41 UV-vis absorption spectra of [Pt(dba)(AsPh₃)] during anodic and cathodic spectroelectrochemistry.

 $\label{eq:sector} Fig.~S42~\text{UV-vis absorption spectra of } [Pt(dba)(SbPh_3)]~\text{during anodic and cathodic spectroelectrochemistry}.$

Fig. S43 Photoluminescence spectrum of [Pt(dpp)(PPh₃)] at 77 K.

Fig. S44 Photoluminescence spectrum of [Pt(dpp)(AsPh3)] at 77 K.

Fig. S45 Photoluminescence spectrum of [Pt(dpp)(SbPh₃)] at 77 K.

Fig. S46 Photoluminescence spectra of [Pt(dba)(PPh₃)] at 77 K and 298 K.

Fig. S47 Photoluminescence spectra of [Pt(dba)(AsPh3)] at 77 K and 298 K.

Fig. S48 Photoluminescence spectra of [Pt(dba)(SbPh3)] at 77 K and 298 K.

Fig. S49 Transient absorption spectra and decay associated spectra of [Pt(dpp)(PnPh₃)] upon excitation at 340 nm (Pn = P, As, Sb).

Fig. S50 Transient absorption spectra and decay associated spectra of [Pt(dba)(PnPh₃)] upon excitation at 340 nm (Pn = P, As, Sb).

Fig. S51 Transient absorption spectra and decay associated spectra of [Pt(dba)(PnPh₃)] upon excitation at 500 nm (Pn = P, As, Sb).

Fig. S52 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(dpp)(PPh_3)]$ in a frozen MeOH/CH₂Cl₂ 1:1 glassy matrix at 77K including the residuals (λ_{ex} = 376 nm, λ_{em} = 510 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S53 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(dpp)(AsPh_3)]$ in a frozen MeOH/CH₂Cl₂ 1:1 glassy matrix at 77K including the residuals (λ_{ex} = 376 nm, λ_{em} = 515 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S54 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(dpp)(SbPh_3)]$ in a frozen MeOH/CH₂Cl₂ 1:1 glassy matrix at 77K including the residuals (λ_{ex} = 376 nm, λ_{em} = 515 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S55 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(dba)(PPh_3)]$ in a frozen MeOH/CH₂Cl₂ 1:1 glassy matrix at 77K including the residuals (λ_{ex} = 376 nm, λ_{em} = 575 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S56 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(dba)(AsPh_3)]$ in a frozen MeOH/CH₂Cl₂ 1:1 glassy matrix at 77K including the residuals (λ_{ex} = 376 nm, λ_{em} = 575 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S57 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(dba)(SbPh_3)]$ in a frozen MeOH/CH₂Cl₂ 1:1 glassy matrix at 77K including the residuals (λ_{ex} = 376 nm, λ_{em} = 575 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S58 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(dba)(PPh₃)] in CH₂Cl₂ at 298 K including the residuals (λ_{ex} = 376 nm, λ_{em} = 600 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S59 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(dba)(AsPh₃)] in CH₂Cl₂ at 298 K including the residuals (λ_{ex} = 376 nm, λ_{em} = 600 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S60 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(dba)(SbPh₃)] in CH₂Cl₂ at 298 K including the residuals (λ_{ex} = 376 nm, λ_{em} = 600 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Supporting Tables

Table S1 Selected structure solution and refinement data for crystal structures containing $[Pt(C^N^C)(PnPh_3)]$ (C^N^C = dpp, dba; Pn = As, Sb).

Table S2 Selected structural data for $[Pt(dpp)(PnPh_3)]$ (Pn = P, As, Sb) from scXRD and DFT geometry optimisations of the S_0 states.

Table S3 Selected structural data for $[Pt(dba)(PnPh_3)]$ (Pn = P, As, Sb) from scXRD and DFT geometry optimisations of the S_0 states.

Table S4 Selected structural data for $[Pt(C^N^C)(PnPh_3)]$ (C^N^C = dpp, dba; Pn = P, As, Sb) from DFT geometry optimizations of the T_1 states.

Table S5 Selected structural data for $[Pt(C^N^C)(BiPh_3)]$ (C^N^C = dpp, dba) from DFT geometry optimisations of the S_0 state.

Table S6 Electrochemical data for the ligands H₂dpp and H₂dba and the complexes [Pt(C^N^C)(PnPh₃)] (Pn = P, As, Sb).

Table S7 UV-vis absorption data of the ligand H2dpp and the complexes [Pt(dpp)(PnPh3)] (Pn = P, As, Sb). **Table S8** UV-vis absorption data of the ligand H2dba and the complexes [Pt(dba)(PnPh3)] (Pn = P, As, Sb).

Experimental Section

Materials. All manipulations were carried out using standard *Schlenk* techniques. The reaction solvent CH₂Cl₂ (HPLC grade) was degassed in three freeze-pump-thaw cycles and dried over activated 4 Å molecular sieves. [Pt(dpp)(dmso)], [Pt(dba)(dmso)], [Pt(dpp)(PPh₃)] and [Pt(dba)(PPh₃)] were prepared following reported procedures.^{1,2}

Instrumentation – general. NMR spectra were recorded on a 600 MHz *Bruker* Avance II+ spectrometer or a 500 MHz *Bruker* Avance III spectrometer. All measurements were done at room temperature. ¹H signals were referenced to TMS. The following abbreviations are used to indicate the multiplicity of signals: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet. The assignment of the signals to the protons present in larger molecules was done with the help of 2D NMR experiments. High resolution electrospray ionisation (HR-ESI) mass spectra were measured on a Thermo Scientific LTQ Orbitrap XL spectrometer using an FTMS analyser. Cyclic voltammetry measurements were performed in a baked-out cyclic voltammetry cell with a glassy carbon working electrode, a platinum counter electrode and an Ag/AgCl pseudo reference electrode. Scans were carried out in 0.1 M *n*Bu4NPF6 THF solution at a scan rate of 50 mV/s or 100 mV/s. The potential was regulated using a *Metrohm* µStat400 potentiostat. The measured data was referenced to the FeCp₂/FeCp₂+ redox pair. UV-vis absorption spectra were measured on a *Varian* 50 Scan UV-vis photometer. Quartz glass cuvettes with a length of 1 cm were used and all spectra were baseline corrected.

Photoluminescence experiments. Photoluminescence spectra at were recorded with a Spex FluoroMax-3 spectrometer. Luminescence quantum yields were determined with a Hamamatsu Photonics absolute PL quantum yield measurement system (C9920-02), equipped with a L9799-01 CW Xenon light source, monochromator, photonic multichannel analyser and integrating sphere. An error ± 2% for the photoluminescence quantum yield Φ is estimated. Degassed spectroscopic grade solvents were used. Photoluminescence quantum yields were measured with a Hamamatsu Photonics absolute PL quantum yield measurement system (C9920-02) equipped with a L9799-01 CW Xe light source (150 W), a monochromator, a C7473 photonic multi-channel analyser, an integrating sphere and employing U6039-05 software (Hamamatsu Photonics, Ltd., Shizuoka, Japan). Steady-state excitation and emission spectra were recorded on a FluoTime 300 spectrometer from PicoQuant equipped with: a 300 W ozone-free Xe lamp (250-900 nm), a 10 W Xe flash-lamp (250-900 nm, pulse width ca. 1 µs) with repetition rates of 0.1 - 300 Hz, a double-grating excitation monochromator (Czerny-Turner type, grating with 1200 lines/mm, blaze wavelength: 300 nm), diode lasers (pulse width < 80 ps) operated by a computer-controlled laser driver PDL-828 "Sepia II" (repetition rate up to 80 MHz, burst mode for slow and weak decays), two double-grating emission monochromators (Czerny-Turner, selectable gratings blazed at 500 nm with 2.7 nm/mm dispersion and 1200 lines/mm, or blazed at 1200 nm with 5.4 nm/mm dispersion and 600 lines/mm) with adjustable slit width between 25 µm and 7 mm, Glan-Thompson polarizers for excitation (after the Xe-lamps) and emission (after the sample). Different sample holders (Peltier-cooled mounting unit ranging from -15 to 110 °C or an adjustable front-face sample holder), along with two detectors (namely a PMA Hybrid-07 from PicoQuant with transit time spread FWHM < 50 ps, 200 – 850 nm, or a H10330C-45-C3 NIR detector with transit time spread FWHM 0.4 ns, 950-1700 nm from Hamamatsu) were used. Steady-state spectra and photoluminescence lifetimes were recorded in TCSPC mode by a PicoHarp 300 (minimum base resolution 4 ps) or in MCS mode by a TimeHarp 260 (where up to several ms can be traced). Emission and excitation spectra were corrected for source intensity (lamp and grating) by standard correction curves. For samples with lifetimes in the ns order, an instrument

response function calibration (IRF) was performed using a diluted Ludox® dispersion. Lifetime analysis was performed using the commercial EasyTau 2 software (PicoQuant). The quality of the fit was assessed by minimizing the reduced chi squared function (χ 2) and visual inspection of the weighted residuals and their autocorrelation. Assuming unitary intersystem crossing efficiencies (due to the chelation of a late transition metal), the average radiative and radiationless deactivation rate constants (k_r and k_{nr} , respectively) were calculated according to the following equations and relationships:

$$k_r = \frac{\phi_L}{\tau_L}, \qquad k_{\rm nr} = \frac{1 - \phi_L}{\tau_L}, \qquad \text{and } \tau_L = \frac{1}{k_r + k_{nr}}$$

where τ_L is the excited state lifetime (or amplitude-weighted average lifetime, τ_{av_amp} , for multiexponential decays).

Transient absorption spectroscopy. The ultrafast transient absorption (TA) experiments were performed using a custom-built setup described in detail elsewhere.³ We employ a Ti-Sapphire (Astrella, Coherent Inc.) regenerative amplifier, which produces 800 nm, 85-fs pulses (laser power-5W, pulse-to-pulse repetition rate of 1 kHz). A part of the amplifier output at 800 nm is directed to an optical parametric amplifier (TOPAS Prime, Light Conversion) to generate the pump at 340 or 500 nm. The excited state dynamics was studied with white-light supercontinuum pulses (generated by focusing a small portion of the amplifier output onto CaF₂ crystal). The fs-TA data was analysed using the KIMOPACK tool.⁴ Prior to global lifetime analysis, the data was arrival-time (chirp) corrected. The temporal resolution of the experiment is limited to 300 fs because of strong contributions of coherent artefact signals to the data interfere with reliable analysis of the pump-probe data at short delay times. The power of pump-pulse used was in the range of 0.4 to 0.8 mW, OD of sample at the excitation wavelength was in the range of 0.3 to 0.5.

Structure solution from single crystal X-ray diffraction. scXRD measurements were performed on a *Bruker D8 Venture* diffractometer including a *Bruker Photon 100 CMOS* detector using Ag K_{α} (λ = 0.56086 Å) or Mo K_{α} (λ = 0.71073 Å) radiation. The crystal data was collected using APEX4 v2021.10-0 ⁵. The structures were solved by dual space methods using SHELXT, and the refinement was carried out with SHELXL employing the full-matrix least-squares methods on Fo² < 2 σ (Fo²) as implemented in ShelXle ^{6–} ⁸. The non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints. The hydrogen atoms were included by using appropriate riding models.

Computational details. All DFT calculations were performed using ORCA 5.0.2.9.10 For all atoms, def2-TZVP basis sets, as well as the corresponding def2-ECPs for Pt and Sb, were used unless stated otherwise.¹¹ The S_0 and T_1 geometries of all compounds were optimised at the BP86 level of theory, using Grimme's D3 dispersion correction and the conductor-like polarisable continuum model (CPCM) parametrised for CH2Cl2 as an approximate solvation model.¹²⁻¹⁷ The geometry optimisations were followed up with numerical frequency calculations in order to confirm the energetic minimum nature of the optimised structure as indicated by the absence of imaginary modes. On the optimised geometries, single point and TD-DFT calculations were performed using the TPSSh functional, Grimme's D3 dispersion correction and CPCM parametrised for CH₂Cl₂.¹⁸ Orbital isosurfaces were extracted from the S₀ single point calculations using the ORCA module orca_plot and plotted with the visualisation software CHEMCRAFT at an isovalue of 0.04.19 For the TD-DFT calculations of absorption spectra for the S_0 states, 40 roots (transitions) for singlets and triplets each were included for each complex. Broadened spectra were obtained using the orca_mapspc module with 2000 cm⁻¹ full width at half maximum band broadening. The TD-DFT calculation output was further evaluated using the software package TheoDORE to analyse relative MLCT, L'MCT, LC, LL'CT, and MC contributions to the emissive *T*¹ states, using the implemented standard algorithm for molecular partitioning of transition metal complexes employing Openbabel.²⁰ At the T_1 geometries, spin-orbit (SO) calculations were performed using the Zeroth-Order Regular Approximation (ZORA), the TPSSh functional, SARC-ZORA-TZVP basis sets for Pt and Sb, and the CPCM parametrised for CH₂Cl_{2.21-23}

Syntheses

[Pt(dpp)(AsPh₃)] 50.0 mg (0.100 mmol, 1.00 eq.) [Pt(dpp)(dmso)] were dissolved in 3 mL CH₂Cl₂ and 30.6 mg (0.100 mmol, 1.00 eq.) AsPh₃ were added. After 10 min, the solvent was removed and the crude product was purified via silica gel column chromatography (eluent: CH₂Cl₂).

Yield: 54.1 mg (0.074 mmol, 74%) orange solid. ¹H NMR (600 MHz, CD₂Cl₂): δ [ppm] = 7.81–7.75 (m, 6H, H13), 7.66 (t, ³*J*_{H,H} = 8.0 Hz, 1H, H4), 7.46 (t, ³*J*_{H,H} = 7.4 Hz, 3H, H14), 7.44–7.38 (m, 8H, H10 and H12), 7.34 (d, ³*J*_{H,H} = 8.0 Hz, 2H, H3), 6.90 (td, *J*_{H,H} = 7.4 Hz, 1.3 Hz, 2H, H9), 6.62 (td, *J*_{H,H} = 7.3 Hz, 1.4 Hz, 2H, H8), 6.48 (dd, *J*_{H,H} = 7.4 Hz, 0.7 Hz, ³*J*_{PtH} = 25.5 Hz, 2H, H7). ¹³C NMR (125 MHz, CD₂Cl₂): δ [ppm] = 166.7 (C2), 164.9 (C5), 150.8 (C6), 140.4 (C4), 139.2 (C7), 134.5 (C13), 133.2 (C11), 130.4 (C14), 129.8 (C8), 128.6 (C12), 123.8 (C10), 123.5 (C9), 114.8 (C3). HR-ESI-MS(+): m/z = 730.09913 ([M]⁺, calc.: m/z = 730.09806).

product was purified via silica gel column chromatography (eluent: CH₂Cl₂). Yield: 50.0 mg (0.064 mmol, 64%) orange solid. ¹H NMR (600 MHz, CD₂Cl₂): δ [ppm] = 7.76–7.72 (m, 6H, H13), 7.67 (t, ³J_{H,H} = 8.0 Hz, 1H, H4), 7.50 (m, 3H, H14), 7.45–7.40 (m, 8H, H10 and H12), 7.34 (d, ³J_{H,H} = 8.0 Hz, 2H, H3), 7.03 (dd, J_{H,H} = 7.3 Hz, 1.3 Hz, ³J_{P,H} = 32.6 Hz, 2H, H7) 6.93 (td, J_{H,H} = 7.5 Hz, 1.3 Hz, 2H, H9), 6.67 (td, J_{H,H} = 7.3 Hz, 1.3 Hz, 2H, H8). ¹³C NMR (125 MHz, CD₂Cl₂): δ [ppm] = 166.6 (C2), 164.0 (C5), 150.9 (C6), 141.7 (C7), 140.6 (C4), 136.5 (C13), 130.7 (C8), 130.4 (C14), 129.9 (C11), 129.0 (C12), 124.0 (C10), 123.6 (C9), 115.0 (C3). HR-ESI-MS(+): m/z = 776.08145 ([M]⁺, calc.: m/z = 776.08028).

5

As-Ph

Ρh

[Pt(dba)(AsPh₃)] 35.0 mg (0.068 mmol, 1.00 eq.) [Pt(dba)(dmso)] were dissolved in 3 mL CH₂Cl₂ and

20.7 mg (0.068 mmol, 1.00 eq.) AsPh₃ were added. After 40 min, the solvent was removed and the crude product was purified via silica gel column chromatography (eluent: CH₂Cl₂). Yield: 34.3 mg (0.044 mmol, 65%) red solid. ¹H NMR (600 MHz, CD₂Cl₂): δ [ppm] = 8.49 (s, 1H, H4), 7.92–7.84 (m, 6H, H15), 7.61 (d, ³J_{H,H} = 8.9 Hz, 2H, H5), 7.56 (d, ³J_{H,H} = 9.1 Hz, 2H, H6), 7.53–7.47 (m, 3H, H16), 7.47–7.42 (m, 6H, H14), 7.37 (dd, J_{H,H} = 7.9 Hz, 0.9 Hz, 2H, H12), 7.06–7.00 (m, 2H, H11), 6.53 (dd, J_{H,H} = 7.1 Hz, 0.7 Hz, ³J_{Pt,H} = 12.7 Hz, 2H, H10). ¹³C NMR (125 MHz, CD₂Cl₂): δ [ppm] = 162.5 (C8), 155.6 (C2), 147.4 (C9), 135.7 (C10),

135.2 (C15), 134.6 (C4), 134.4 (C7), 133.2 (C11), 130.6 (C16), 130.5 (C13), 129.0 (C14), 128.7 (C5), 124.4 (C3), 122.9 (C6), 121.4 (C12). HR-ESI-MS(+): m/z = 778.09874 ([M]⁺, calc.: m/z = 778.09806).

[Pt(dba)(SbPh₃)] 31.0 mg (0.060 mmol, 1.00 eq.) [Pt(dba)(dmso)] were dissolved in 3 mL CH₂Cl₂ and 21.1 mg (0.060 mmol, 1.00 eq.) SbPh₃ were added. After 45 min, the solvent was removed and the crude

product was purified via silica gel column chromatography (eluent: CH₂Cl₂). Yield: 41.7 mg (0.051 mmol, 84%) red solid. ¹H NMR (600 MHz, CD₂Cl₂): δ [ppm] = 8.51 (s, 1H, H4), 7.86–7.80 (m, 6H, H15), 7.63 (d, ³*J*_{H,H} = 8.9 Hz, 2H, H5), 7.58 (d, ³*J*_{H,H} = 8.9 Hz, 2H, H6), 7.54–7.49 (m, 3H, H16), 7.48–7.43 (m, 6H, H14), 7.40 (dd, *J*_{H,H} = 6.2 Hz, 4.2 Hz, ⁵*J*_{Pt,H} = 15.4 Hz, 2H, H12), 7.12–7.05 (m, 4H, H10 and H11). ¹³C NMR (125 MHz, CD₂Cl₂): δ [ppm] = 161.3 (C8), 155.5 (C2), 147.5 (C9), 137.9 (C10), 136.5 (C15), 135.4 (C4), 134.8 (C7), 131.3 (C11), 130.5 (C16), 129.8 (C13), 129.2 (C14), 129.0 (C5), 124.6 (C3), 123.0 (C6), 121.6 (C12). HR-ESI-MS(+): m/z = 824.08130 ([M]+, calc.: m/z = 824.08028).

Attempted synthesis of [Pt(dpp)(BiPh₃)]

Time resolved NMR study. For *in situ* observation of the reaction of [Pt(dpp)(dmso)] with BiPh₃, the latter (0.75 eq.) was added to a solution of the Pt complex in CD₂Cl₂, and the sample was quickly transferred into a 600 MHz NMR spectrometer (see above for details on instrumentation). During the

first few minutes, ¹H NMR spectra were recorded in quick succession, but no change was detected between them. ¹H NMR (600 MHz, CD₂Cl₂): δ [ppm] = 7.68 (d, H_{complex}), 7.65 (d, H_{BiPh3}), 7.53 (t, H_{complex}), 7.38 (dd, H_{complex}), 7.29 (t, H_{BiPh3}), 7.23 (m, H_{BiPh3}), 7.16 (td, H_{complex}), 7.01 (td, H_{complex}). For the following 12 h, spectra were recorded every 10 min. The integrals of the observed signals were normalised to a value of 2.00 for the signal at 7.38 ppm which belongs to [Pt(dpp)(dmso)]. The integral of the well-isolated multiplet at 7.29 ppm belonging to BiPh₃ decreased significantly over the timescale of the experiment from ca. 4.5 to ca. 3.8 (Fig. S21). The less well-isolated BiPh₃ signals decreased in an approximately proportional manner.

MS analysis. A mixture of [Pt(dpp)(dmso)] (68.6 mg, 0.137 mmol, 1.0 eq.) and BiPh₃ (120.2 mg, 0.273 mmol, 2.0 eq.) in 4 mL CH₂Cl₂ was stirred at room temperature for 6 d. Precipitation of black solids was observed. The solids were removed by filtration and the filtrate was evaporated to dryness. EI-MS analysis of the residue detected a variety of fragments and coupling products, i.e. phenylated H₂dpp derivatives, derived from the starting materials. m/z = 154.07748 ([PhPy]⁺, calc.: 154.065674), 208.97958 ([Bi]⁺, calc.: 208.980399), 230.09628 ([Hdpp]⁺, calc.: 230.096974), 286.01876 ([PhBi]⁺, calc.: 286.019524), 306.12744 ([Hdpp–Ph]⁺, calc.: 306.128275), 382.15869 ([Ph-dpp-Ph]⁺, calc.: 382.159575), 458.19002 ([Ph₂–dpp–Ph]⁺, calc.: 458.190875), 535.21646 ([Ph₂–dpp–Ph₂]⁺, calc.: 535.230000).

Supporting Figures

¹⁸⁰ 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 chemical shift (ppm) Fig. S2 125 MHz ¹³C NMR of [Pt(dpp)(AsPh₃)] in CD₂Cl₂.

Fig. S3 500 MHz ¹H, ¹H COSY of [Pt(dpp)(AsPh₃)] in CD₂Cl₂.

Fig. S4 500 MHz ¹H_z¹³C HSQC of [Pt(dpp)(AsPh₃)] in CD₂Cl₂.

Fig. S5 500 MHz ¹H,¹³C HMBC of [Pt(dpp)(AsPh₃)] in CD₂Cl₂.

Fig. S6 600 MHz ¹H NMR of [Pt(dpp)(SbPh₃)] in CD₂Cl₂.

Fig. S8 500 MHz ¹H, ¹H COSY of [Pt(dpp)(SbPh₃)] in CD₂Cl₂.

Fig. S9 500 MHz ¹H,¹³C HSQC of [Pt(dpp)(SbPh₃)] in CD₂Cl₂.

Fig. S10 500 MHz ¹H,¹³C HMBC of [Pt(dpp)(SbPh₃)] in CD₂Cl₂.

Fig. S14 500 MHz ¹H,¹³C HSQC of [Pt(dba)(AsPh₃)] in CD₂Cl₂.

Fig. S16 500 MHz ¹H NMR of [Pt(dba)(SbPh₃)] in CD₂Cl₂.

 175
 170
 165
 160
 155
 150
 145
 140
 135
 120
 115
 110
 105
 100
 95
 90
 85
 80
 75
 70
 65
 60
 55
 50

 chemical shift (ppm)

 Fig. S17
 125
 MHz
 ¹³C
 NMR of [Pt(dba)(SbPh3)] in CD2Cl2.

Fig. S18 500 MHz ¹H, ¹H COSY of [Pt(dba)(SbPh₃)] in CD₂Cl₂.

5.0 4.5 4.0 chemical shift (ppm) Fig. S20 500 MHz 1H,13C HMBC of [Pt(dba)(SbPh3)] in CD2Cl2.

6.5

6.0

5.5

7.0

8.5

8.0

7.5

3.5

3.0

2.5

2.0

1.5

1.0

0.5

-160

0.0

Fig. S21 600 MHz ¹H NMR spectra from *in situ* NMR observation of a mixture of [Pt(dpp)(dmso)] and BiPh₃ in CD₂Cl₂.

Fig. S22 Crystal structure (left) of [Pt(dpp)(AsPh₃)] viewed along the *b* axis and molecular structure (right) with 50% ellipsoids, H atoms omitted for clarity.

Fig. S23 Crystal structure (left) of [Pt(dpp)(SbPh₃)] viewed along the *a* axis and molecular structure (right) with 50% ellipsoids, H atoms omitted for clarity.

Fig. S24 Crystal structure (left) of [Pt(dba)(AsPh₃)]·Et₂O·CHCl₃ viewed along the *b* axis and molecular structure of [Pt(dbaAsPh₃] (right) with 50% ellipsoids, H atoms and co-crystallised solvent molecules omitted for clarity.

Fig. S25 Crystal structure (left) of [Pt(dba)(SbPh₃)]·0.5Et₂O viewed along the *c* axis and molecular structure of [Pt(dba)(SbPh₃)] (right) with 50% ellipsoids, H atoms and co-crystallised solvent molecules omitted for clarity.

Fig. S26 Structures of [Pt(dpp)(BiPh₃)] and [Pt(dba)(BiPh₃)] from free (left) and constrained (middle and right) DFT geometry optimisations.

Fig. S27 Cyclic voltammograms of [Pt(dpp)(PPh₃)] in 0.1 M *n*-Bu₄NPF₆/THF.

Fig. S28 Cyclic voltammograms of [Pt(dpp)(AsPh₃)] in 0.1 M *n*-Bu₄NPF₆/THF.

Fig. S29 Cyclic voltammograms of [Pt(dpp)(SbPh₃)] in 0.1 M n-Bu₄NPF₆/THF.

Fig. S30 Cyclic voltammograms of [Pt(dba)(PPh₃)] in 0.1 M n-Bu₄NPF₆/THF.

Fig. S31 Cyclic voltammograms of [Pt(dba)(AsPh₃)] in 0.1 M n-Bu₄NPF₆/THF.

Fig. S32 Cyclic voltammograms of [Pt(dba)(SbPh₃)] in 0.1 M *n*-Bu₄NPF₆/THF.

Fig. S33 Selected DFT-calculated frontier orbitals and energies for [Pt(dpp)(PnPh₃)] (Pn = P, As, Sb, Bi).

Fig. S34 Selected DFT-calculated frontier orbitals and energies for [Pt(dba)(PnPh₃)] (Pn = P, As, Sb, Bi).

Fig. S35 Experimental UV-vis absorption spectra of H₂dpp, and the complexes [Pt(dpp)(PnPh₃)] (Pn = P, As, and Sb) in CH₂Cl₂ solution at 298 K.

Fig. S36 TD-DFT calculated (TPSSh/def2-TZVP/CPCM(CH₂Cl₂)) UV-vis absorption spectra of the complexes [Pt(dpp)(PnPh₃)] (Pn = P, As, Sb, Bi).

Fig. S37 Experimental UV-vis absorption spectra of H₂dba, and the complexes [Pt(dba)(PnPh₃)] (Pn = P, As, and Sb) in CH₂Cl₂ solution at 298 K.

Fig. S38 TD-DFT-calculated (TPSSh/def2-TZVP/CPCM(CH₂Cl₂)) UV-vis absorption spectra of [Pt(dba)(PnPh₃)] (Pn = P, As, Sb, Bi).

Fig. S39 UV-vis absorption spectra of [Pt(dpp)(AsPh₃)] during anodic (left) and cathodic (right) electrolysis (spectroelectrochemistry) in 0.1 M *n*-Bu₄NPF₆ THF solution.

Fig. S40 UV-vis absorption spectra of [Pt(dpp)(SbPh₃)] during anodic (left) and cathodic (right) electrolysis (spectroelectrochemistry) in 0.1 M *n*-Bu₄NPF₆ THF solution.

Fig. S41 UV-vis absorption spectra of [Pt(dba)(AsPh₃)] during anodic (left) and cathodic (right) electrolysis (spectroelectrochemistry) in 0.1 M *n*-Bu₄NPF₆ THF solution.

Fig. S42 UV-vis absorption spectra of [Pt(dba)(SbPh₃)] during anodic (left) and cathodic (right) electrolysis (spectroelectrochemistry) in 0.1 M *n*-Bu₄NPF₆ THF solution.

Fig. S43 Photoluminescence spectrum of $[Pt(dpp)(PPh_3)]$ at 77 K in a frozen glassy MeOH/CH₂Cl₂ 1:1 matrix, $\lambda_{exc} = 350$ nm.

Fig. S44 Photoluminescence spectrum of $[Pt(dpp)(AsPh_3)]$ at 77 K in a frozen glassy MeOH/CH₂Cl₂ 1:1 matrix, λ_{exc} = 350 nm.

Fig. S45 Photoluminescence spectrum of $[Pt(dpp)(SbPh_3)]$ at 77 K in a frozen glassy MeOH/CH₂Cl₂ 1:1 matrix, $\lambda_{exc} = 350$ nm.

Fig. S46 Photoluminescence spectra of [Pt(dba)(PPh₃)] at 77 K in a frozen glassy MeOH/CH₂Cl₂ 1:1 matrix (solid line) and in fluid CH₂Cl₂ solution at 298 K (dashed line) λ_{exc} = 350 nm.

Fig. S47 Photoluminescence spectra of [Pt(dba)(AsPh₃)] at 77 K in a frozen glassy MeOH/CH₂Cl₂ 1:1 matrix (solid line) and in fluid CH₂Cl₂ solution at 298 K (dashed line), λ_{exc} = 350 nm.

Fig. S48 Photoluminescence spectra of [Pt(dba)(SbPh₃)] at 77 K in a frozen glassy MeOH/CH₂Cl₂ 1:1 matrix (solid line) and in fluid CH₂Cl₂ solution at 298 K (dashed line), λ_{exc} = 350 nm.

Fig. S49 Transient absorption spectra (TAS) at selected delay times (a-c) and decay associated spectra (d-f) for [Pt(dpp)(PPh₃)] (a and d), [Pt(dpp)(AsPh₃)] (b and e) and [Pt(dpp)(SbPh₃)] (c and f) upon excitation at 340 nm in THF.

Fig. S50 TAS at selected delay times (a-c) and decay associated spectra (d-f) for [Pt(dba)(PPh₃)] (a and d), [Pt(dba)(AsPh₃)] (b and e) and [Pt(dba)(SbPh₃)] (c and f) upon excitation at 340 nm in THF.

Fig. S51 TAS at selected delay times (a-c) and decay associated spectra (d-f) for [Pt(dba)(PPh₃)] (a and d), [Pt(dba)(AsPh₃)] (b and e) and [Pt(dba)(SbPh₃)] (c and f) upon excitation at 500 nm in THF.

Parameter	Value	Δ	δ
A1[kCnts/Chnl]	5.69	±0.54	9.4%
τ ₁ [ns]	14 490	±220	1.5%
I ₁ [kCnts]	10 310	±810	7.8%
A _{Rel1} [%]	61.7	±5.8	9.3%
I _{Rel1} [%]	70.3	±5.5	7.8%
A ₂ [kCnts/Chnl]	3.55	±0.53	15%
τ ₂ [ns]	9 860	±420	4.2%
I ₂ [kCnts]	4 370	±810	19%
A _{Rel2} [%]	38.4	±5.8	15%
I _{Rel2} [%]	29.8	±5.5	18%
Bkgr _{Dec} [kCnts]	0.0052	±0.0003	5.1%
T _{Avint} [ns]	13 107	±13	0.1%
T _{AvAmp} [ns]	12 709	±13	0.1%

Fig. S52 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(dpp)(PPh_3)]$ in a frozen MeOH/CH₂Cl₂ 1:1 glassy matrix at 77K including the residuals (λ_{ex} = 376 nm, λ_{em} = 510 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S53 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(dpp)(AsPh_3)]$ in a frozen MeOH/CH₂Cl₂ 1:1 glassy matrix at 77K including the residuals (λ_{ex} = 376 nm, λ_{em} = 515 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Δ	δ
A1[kCnts/Chnl]	3.13	±0.31	9.7%
T1[NS]	14 210	±240	1.7%
I1[kCnts]	5 550	±460	8.2%
A _{Rel1} [%]	35.9	±3.5	9.7%
I _{Rel1} [%]	44.0	±3.7	8.2%
A2[kCnts/Chnl]	5.60	±0.30	5.3%
т ₂ [ns]	10 130	±110	1.1%
I ₂ [kCnts]	7 080	±460	6.5%
ARel2[%]	64.2	±3.5	5.4%
I _{Rel2} [%]	56.1	±3.7	6.4%
Bkgr _{Dec} [kCnts]	0.0051	±0.0002	3.3%
TAvInt[NS]	11 916	±13	0.1%
TAvAmp[NS]	11 584.9	±7.0	0.1%

Fig. S54 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(dpp)(SbPh_3)]$ in a frozen MeOH/CH₂Cl₂ 1:1 glassy matrix at 77K including the residuals (λ_{ex} = 376 nm, λ_{em} = 515 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Δ	δ
A1[kCnts/Chnl]	7.33	±0.40	5.3%
T1[NS]	25 620	±520	2.0%
I1[kCnts]	5 870	±430	7.3%
A _{Rel1} [%]	86.8	±4.8	5.4%
I _{Rel1} [%]	79.7	±5.7	7.1%
A ₂ [kCnts/Chnl]	1.13	±0.41	36%
T ₂ [ns]	42 900	±3 200	7.4%
I ₂ [kCnts]	1 510	±420	28%
A _{Rel2} [%]	13.3	±4.8	36%
I _{Rel2} [%]	20.4	±5.7	28%
Bkgr _{Dec} [kCnts]	0.0051	±0.0006	11%
TAvint[NS]	29 128	±65	0.2%
TAvAmp[NS]	27 905	±64	0.2%

Fig. S55 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(dba)(PPh_3)]$ in a frozen MeOH/CH₂Cl₂ 1:1 glassy matrix at 77K including the residuals (λ_{ex} = 376 nm, λ_{em} = 575 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S56 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(dba)(AsPh_3)]$ in a frozen MeOH/CH₂Cl₂ 1:1 glassy matrix at 77K including the residuals (λ_{ex} = 376 nm, λ_{em} = 575 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Δ	δ
A1[kCnts/Chnl]	9.1815	±0.0100	0.1%
T1[NS]	21 912	±15	0.1%
I1[kCnts]	6 286.9	±3.4	0.1%
A _{Rel1} [%]	100.0		
I _{Rel1} [%]	100.0		
Bkgr _{Dec} [kCnts]	0.0069	±0.0002	2.6%
T _{AvInt} [ns]	21 912	±15	0.1%
T _{AvAmp} [ns]	21 912	±15	0.1%

δ

1.0%

0.7%

1.7%

1.1%

1.6%

26%

13%

16%

26%

16%

9.7%

0.9%

0.3%

Fig. S57 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(dba)(SbPh_3)]$ in a frozen MeOH/CH₂Cl₂ 1:1 glassy matrix at 77K including the residuals (λ_{ex} = 376 nm, λ_{em} = 575 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Δ	δ
A1[kCnts/Chnl]	1.492	±0.015	0.9%
T1[NS]	2 352	±19	0.8%
I1[kCnts]	438.4	±1.7	0.4%
A _{Rel1} [%]	19.1	±0.3	1.3%
I _{Rel1} [%]	55.2	±0.4	0.6%
A ₂ [kCnts/Chnl]	6.346	±0.040	0.6%
T ₂ [ns]	449.2	±2.8	0.6%
I ₂ [kCnts]	356.3	±3.8	1.1%
A _{Rel2} [%]	81.0	±0.3	0.3%
I _{Rel2} [%]	44.9	±0.4	0.8%
Bkgr _{Dec} [kCnts]	0.0067	±0.0006	8.3%
TAvInt[NS]	1 498.6	±9.2	0.6%
TAvAmp[NS]	811.2	±4.3	0.5%

Fig. S58 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(dba)(PPh₃)] in fluid CH₂Cl₂ at 298 K including the residuals (λ_{ex} = 376 nm, λ_{em} = 600 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S59 Left: Raw (experimental) time-resolved photoluminescence decay of $[Pt(dba)(AsPh_3)]$ in fluid CH₂Cl₂ at 298 K including the residuals (λ_{ex} = 376 nm, λ_{em} = 600 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

δ

0.1%

0.1%

0.2%

1.0%

0.1%

0.1%

Fig. S60 Left: Raw (experimental) time-resolved photoluminescence decay of [Pt(dba)(SbPh3)] in fluid CH₂Cl₂ at 298 K including the residuals (λ_{ex} = 376 nm, λ_{em} = 600 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Supporting Tables

[Pt(C^N^C)(PnPh ₃)] (0	C^N^C = dpp, dba	; Pn = As, Sb).	5	0
compound	[Pt(dpp)(AsPh ₃)]	[Pt(dba)(AsPh3)] ·Et2O·CHCl3 ^a	[Pt(dpp)(SbPh ₃)]	[Pt(dba)(SbPh3)]·0.5Et2O
empirical formula	C35H26AsNPt	C44H37AsCl3NOPt	C35H26SbNPt	C82H62N2OSb2Pt2
formula weight	730.58	972.14	777.41	1725.10
(g/mol)				
temperature (K)	100(2)	109(2)	100(2)	100(2)
wavelength	Ag K _α	Μο Κα	Μο Κα	Μο Κα
crystal system	monoclinic	monoclinic	triclinic	triclinic
space group	P21/c	C2/c	PĪ	PĪ
cell parameters				
a (Å)	4.0056(6)	27.2312(16)	10.1552(6)	12.559(2)
b (Å)	9.5784(4)	10.5042(5)	15.5531(9)	13.453(2)
c (Å)	20.6896(9)	26.597(2)	17.832(1)	19.012(2)
α (°)	90	90	104.044(3)	99.710(4)
β (°)	96.219(2)	118.864(2)	97.175(3)	97.164(4)
γ (°)	90	90	90.067(2)	90.961(5)
V (Å ³)	2759.2(2)	6662.6(8)	2709.4(3)	3139.3(7)
Ζ	4	8	4	2
μ (mm ⁻¹)	3.41	5.35	6.18	5.35
crystal size (mm ³)	$0.06 \times 0.03 \times 0.03$	$0.1 \times 0.1 \times 0.1$	$0.15 \times 0.08 \times 0.02$	$0.3 \times 0.3 \times 0.2$
crystal colour/shape	yellow prism	red prism	orange prism	red prism
F(000)	1416	3412	1488	1668
2θ range (°)	1.9 - 22.0	3.0 - 30.5	2.0 - 30.2	2.0 - 28.3

Table S1 Selected structure solution and refinement data for crystal structures containing

index ranges

hmin/max	-18 / 18	-38 / 38	-14 / 14	-16 / 16
kmin/max	-12 / 12	-14 / 14	-21 / 21	-17 / 17
lmin/max	-27 / 27	-37 / 37	-25 / 25	-25 / 25
reflections				
total	52922	85756	153953	146817
independent	6871	10116	15935	15332
completeness	99.9%	99.9%	99.9%	99.9%
data / restraints /	6871 / 0 / 343	10116 / 0 / 457	15935 / 0 / 667	15332 / 0 / 804
parameters				
GooF on F ²	1.06	1.02	1.10	1.08
final R values				
R₁ (I≥2σ(I)/all	0.021/0.023	0.020/0.022	0.075/0.090	0.021/0.022
data)				
wR ₂	0.050	0.046	0.161	0.051
Rint	0.059	0.046	0.083	0.043
R_{σ}	0.031	0.026	0.050	0.024
largest peak / hole	1.07 / -0.80	0.63 / -0.66	3.75 / -6.41	4.48 ^a / -1.17
(e/Å ³)				
CCDC	2149899	2194357	2257280	2208288

^a Due to the disordered solvent molecules Et₂O and CHCl₃ occupying special positions with respect to the cell symmetry, the refinement of these molecules was impaired and the corresponding H atoms could not be added to the model using AFIX in all cases. The H atoms missing in the structure solution were nonetheless included in the calculation of the empirical formula and formula weight. ^b This residual electron density is localised in direct proximity to the Et₂O molecule found in the structure and is attributed to its disorder which could not be explicitly refined.

Table S2 Selected structural data for [Pt(dpp)(PnPh ₃)] (Pn = P, As, Sb) from scXRD and DFT g	geometry
optimisations of the S ₀ states. ^a	

	[Pt(dpp)(PPh	3)]	[Pt(dpp)(AsPl	n3)]	[Pt(dpp)(SbPh ₃)]	
	scXRD ^a	DFT	scXRD	DFT	scXRD ^b	DFT
distances (Å)						
Pt-N1	2.026(6)	2.042	2.008(2)	2.025	2.01(1)/2.03(1)	2.022
Pt-C7	2.065(6)	2.090	2.067(2)	2.083	2.08(1)/2.08(1)	2.081
Pt-C13	2.080(6)	2.090	2.066(2)	2.086	2.07(1)/2.06(1)	2.076
Pt–Pn	2.209(2)	2.234	2.321(1)	2.351	2.504(1)/2.491(1)	2.507
N1-C5	1.347(8)	1.358	1.347(3)	1.359	1.35(1)/1.36(1)	1.359
N1-C1	1.355(8)	1.357	1.353(3)	1.360	1.34(1)/1.35(2)	1.359
C5-C6	1.466(9)	1.468	1.471(4)	1.468	1.48(2)/1.47(2)	1.469
C1-C12	1.479(8)	1.468	1.474(4)	1.468	1.48(1)/1.48(2)	1.469
C6-C7	1.427(9)	1.434	1.431(4)	1.436	1.43(2)/1.44(1)	1.436
C12-C13	1.409(9)	1.436	1.423(4)	1.434	1.42(2)/1.42(2)	1.436
angles (°)						
C7-Pt-C13	159.8(2)	159.5	161.0(1)	160.5	160.6(4)/161.5(5)	161.0
Pn-Pt-N1	175.9(2)	174.9	175.8(1)	176.3	172.9(2)/170.2(2)	177.5
N1-Pt-C7	80.3(2)	79.9	80.7(1)	80.2	80.4(4)/81.0(4)	80.5
N1-Pt-C13	80.2(2)	79.7	80.9(1)	80.3	80.2(4)/80.5(4)	80.5
C7–Pt–Pn	97.6(2)	95.7	101.4(7)	103.3	97.4(3)/95.7(3)	97.0
C13–Pt–Pn	102.2(2)	104.8	97.3(1)	96.1	101.9(3)/102.6(3)	102.0
C–Pn–C averaged	104.1(2)	103.7	103.7(1)	102.7	98.3(2)/99.7(2)	101.2
C–Pn–Pt averaged	114.6(2)	114.8	114.9(1)	115.6	118.8(1)/118.1(1)	116.9
Sum of \land around Pt	360.3	360.1	360.3	359.9	359.9/360.2	360.0
dihedral angles (°)						
C7-Pt-Pn-C18	78.4(3)	56.6	97.3(1)	62.4	51.1(4)/66.8(5)	60.6
C13-Pt-Pn-C18	97.8(3)	121.6	79.4(1)	122.7	127.4(4)/115.6(6)	122.2
N1-Pt-Pn-C18	136.7(23)	85.6	143.2(8)	68.9	20(2)/136(2)	67.0
N1-C1-C12-C17	2.9(6)	2.7	11.1(2)	0.9	7(1)/4(1)	0.2

N1-C5-C6-C11	12.1(6)	2.6	2.3(2)	1.2	3(1)/0.51(1)	179.7
^a scXRD data for [Pt	(dpp)(PPh₃)] fi	rom ref. ¹ ^b Da	ta for two mo	lecules in the	unit cell.	

	[Pt(dba)(PPh3))]	[Pt(dba)(AsPh ₃)]		[Pt(dba)(SbPh3)]	
	scXRD ª	DFT	scXRD	DFT	scXRD ^b	DFT
distances (Å)						
Pt-N1	2.003(4)	2.030	1.996(2)	2.014	1.996(2)/1.994(2)	2.010
Pt-C1	2.099(5)	2.117	2.086(2)	2.115	2.110(3)/2.100(3)	2.107
Pt-C18	2.106(5)	2.122	2.101(2)	2.114	2.092(3)/2.098(3)	2.110
Pt–Pn	2.230(2)	2.232	2.335(1)	2.349	2.487(1)/2.493(1)	2.505
N1-C13	1.333(5)	1.340	1.334(3)	1.341	1.337(3)/1.332(3)	1.340
N1-C10	1.338(7)	1.339	1.335(3)	1.341	1.339(3)/1.340(3)	1.340
C13-C17	1.420(8)	1.426	1.428(4)	1.425	1.429(4)/1.425(3)	1.426
C10-C6	1.440(6)	1.426	1.421(3)	1.426	1.423(3)/1.425(4)	1.425
C17-C18	1.439(6)	1.440	1.448(3)	1.440	1.434(3)/1.432(3)	1.440
C6C1	1.431(7)	1.438	1.432(3)	1.438	1.440(3)/1.435(4)	1.440
C7–C8	1.363(7)	1.373	1.356(3)	1.373	1.357(4)/1.365(4)	1.373
C14–C15	1.354(8)	1.373	1.361(4)	1.373	1.361(4)/1.359(4)	1.373
angles (°)						
C1-Pt-C18	158.6(2)	158.1	159.6(1)	158.1	159.5(1)/159.3(1)	159.4
Pn-Pt-N1	176.2(1)	175.8	176.5(1)	177.1	174.0(1)/177.3(1)	178.1
N1-Pt-C1	79.5(2)	79.2	80.1(1)	79.5	79.6(1)/79.8(1)	79.7
N1-Pt-C18	79.2(2)	79.0	79.6(1)	79.4	80.0(1)/79.5(1)	79.7
C1–Pt–Pn	96.8(1)	96.7	96.5(1)	97.7	102.9(1)/99.6(1)	102.2
C18–Pt–Pn	104.5(1)	105.1	103.8(1)	103.4	97.6(1)/101.1(1)	98.4
C–Pn–C averaged	104.3(1)	104.0	103.5(1)	103.0	102.5(1)/99.8(1)	101.5
C–Pn–Pt averaged	114.4(1)	114.5	114.9(1)	115.4	115.8(1)/118.2(1)	116.6
Sum of \land around Pt	360.0	360.0	360.0	360.0	360.1/360.0	360.0
dihedral angles (°)						
C1-Pt-Pn-C28	169.7(2)	174.0	69.9(1)	62.9	128.9(1)/170.0(1)	119.1
C18-Pt-Pn-C28	12.1(2)	4.4	108.6(1)	117.7	49.4(1)/10.9(1)	60.8
N1-Pt-Pn-C28	5.6(17)	8.9	73.5(9)	49.8	15.5(6)/112.0(1)	47.1
N1-C10-C6-C5	1.0(4)	1.1	1.7(2)	0.6	0.6(3)/1.2(2)	0.0
N1-C13-C17-C16	2.5(4)	1.3	0.2(2)	0.5	1.8(2)/0.8(2)	0.2
N1-C10-C9-C8	1.3(4)	0.5	0.5(2)	0.2	0.4(2)/0.4(2)	0.0
N1-C13-C12-C14	0.1(4)	0.6	0.3(2)	0.2	0.4(2)/1.5(2)	0.0
C14-C12-C11-C9	0.5(5)	0.9	0.1(2)	0.4	0.5(2)/0.9(3)	0.0

Table S3 Selected structural data for [Pt(dba)(PnPh ₃)] (Pn = P, As, Sb) from sc	XRD and DFT geometry
optimisations of the S ₀ states. ^a	

^a Data for [Pt(dba)(PPh₃)] from ref.2. ^b Data for two molecules in the unit cell.

Table S4 Selected structural data for $[Pt(C^N^C)(PnPh_3)]$ (C^N^C = dpp, dba; Pn = P, As, Sb) from DFT geometry optimizations of the T_1 states.

	dpp			dba			
	Р	As	Sb		Р	As	Sb
distances (Å)				distances (Å)			
Pt-N1	2.033	2.021	2.025	Pt-N1	2.020	2.009	2.005
Pt-C7	2.060	2.054	2.051	Pt-C1	2.084	2.081	2.081
Pt-C13	2.054	2.050	2.049	Pt-C18	2.093	2.086	2.080
Pt–Pn	2.259	2.373	2.531	Pt–Pn	2.255	2.368	2.524
N1-C5	1.378	1.380	1.379	N1-C10	1.357	1.358	1.357
N1-C1	1.379	1.381	1.380	N1-C13	1.357	1.357	1.357
C5–C6	1.448	1.448	1.449	C13-C17	1.402	1.402	1.403
C1-C12	1.448	1.448	1.449	C10-C6	1.403	1.403	1.403
C6-C7	1.440	1.440	1.440	C17-C18	1.449	1.449	1.450

C12-C13	1.439	1.440	1.440	C6-C1	1.447	1.447	1.450
angles (°)				C7–C8	1.385	1.386	1.386
C7-Pt-C13	145.4	146.5	147.4	C14-C15	1.386	1.386	1.386
Pn-Pt-N1	174.2	174.5	174.4	angles (°)			
N1-Pt-C7	79.1	79.5	79.7	C1-Pt-C18	152.3	153.2	154.9
N1-Pt-C13	79.3	79.7	79.8	Pn-Pt-N1	176.6	177.1	178.1
C7–Pt–Pn	103.9	103.3	103.1	N1-Pt-C1	78.9	79.2	79.4
C13–Pt–Pn	100.3	99.8	99.7	N1-Pt-C18	78.6	79.0	79.3
C–Pn–C averaged	104.1	103.0	101.3	C1–Pt–Pn	98.3	98.2	98.7
C–Pn–Pt averaged	114.5	115.3	116.7	C18–Pt–Pn	104.6	103.8	102.6
Sum of \land around Pt	362.6	362.3	362.3	C–Pn–C averaged	104.1	103.1	101.4
dihedral angles (°)				C–Pn–Pt averaged	114.4	115.3	116.6
C8-C7-Pt-C13	121.3	122.2	124.3	Sum of \land around Pt	360.4	360.2	360.0
C7-Pt-C13-C14	123.0	123.1	124.4	dihedral angles (°)			
N1-C1-C12-C17	173.5	173.1	172.2	N1-C10-C6-C5	180.0	179.8	179.5
N1-C5-C6-C11	173.8	173.3	172.2	N1-C13-C17-C16	179.5	179.9	179.6
				N1-C10-C9-C8	178.7	178.6	178.6
				N1-C13-C12-C14	179.0	178.8	178.7
				C14-C12-C11-C9	175.6	174.7	175.5

T	able	S5 Selected	structural	data for	[Pt(C^N^O	C)(BiPh3)]	(C^N^C =	= dpp,	dba)	from	DFT	geometry	y
0	ptimi	sations of th	ne So state.										

	[Pt(dpp)(BiPh ₃)]			[Pt(dba)(BiPh ₃)]
	free	constrained		constrained
distances (Å)			distances (Å)	
Pt-N1	2.065	2.004	Pt-N1	1.997
Pt-C7	2.080	2.076	Pt–C1	2.101
Pt-C13	2.102	2.065	Pt-C18	2.103
Pt–Bi	2.722	2.602	Pt–Bi	2.599
Pt-CPh	2.016	-		
N1-C5	1.356	1.360	N1-C13	1.342
N1-C1	1.354	1.362	N1-C10	1.343
C5-C6	1.471	1.469	C13-C17	1.425
C1-C12	1.474	1.467	C10-C6	1.424
C6-C7	1.434	1.435	C17-C18	1.439
C12-C13	1.435	1.436	C6-C1	1.438
			C7–C8	1.374
			C14–C15	1.373
angles (°)			angles (°)	
C7-Pt-C13	159.6	161.9	C1-Pt-C18	160.26
Bi-Pt-N1	87.6	175.8	Bi–Pt–N1	169.1
N1-Pt-C7	80.1	81.0	N1-Pt-C1	80.2
N1-Pt-C13	79.6	80.9	N1-Pt-C18	80.1
C7–Pt–Bi	101.1	98.3	C1–Pt–Bi	96.6
C13-Pt-Bi	79.7	99.8	C18–Pt–Bi	102.4
N1-Pt-CPh	175.7	-	C-Bi-C averaged	100.1
C7–Pt–CPh	98.5	-	C-Bi-Pt averaged	117.7
C18-Pt-CPh	101.6	-		-
Bi-Pt-CPh	96.7	-		-
C–Bi–C averaged	-	99.9		
C-Bi-Pt averaged	-	117.9		
Sum of \land around Pt	-	360.0	Sum of ∧ around Pt	359.3
dihedral angles (°)			dihedral angles (°)	
C7-Pt-Bi-C18	21.3	56.0	C1-Pt-Bi-C22	65.0

C13-Pt-Bi-C18	0.6	125.2	C18-Pt-Bi-C22	120.3
N1-Pt-Bi-C18	100.7	44.4	N1-Pt-Bi-C22	42.4
N1-C1-C12-C17	1.9	3.3	N1-C10-C6-C5	5.5
N1-C5-C6-C11	1.7	0.8	N1-C13-C17-C16	0.4
			N1-C10-C9-C8	5.5
			N1-C13-C12-C14	0.9
			C14-C12-C11-C9	3.1

Table S6 Electrochemical data for the ligands H2dpp and H2dba and the complexes [Pt(C^N^C)(PnPh3)]]
$(Pn = P, As, Sb).^{a}$	

<u> </u>						
	Red3	Red2	Red1	Ox1	$\Delta Red1$ -Red2	$\Delta \text{Red1-Ox1}$
	<i>E</i> _p (V)	<i>E</i> _p (V)	E1/2 (V)	<i>E</i> _p (V)		
H2dpp	_		-2.85	-		_
[Pt(dpp)(PPh ₃)]	_	-2.96	-2.36	0.65	0.60	3.01
[Pt(dpp)(AsPh ₃)]	_	-2.97	-2.36	0.56	0.61	2.92
[Pt(dpp)(SbPh ₃)]	-3.36	-2.67	-2.26	0.61	0.41	2.87
H2dba	_	-2.96	-2.31	-	0.65	_
[Pt(dba)(PPh ₃)]	-3.26	-2.70	-2.00	0.72	0.70	2.72
[Pt(dba)(AsPh ₃)]	-3.37	-2.68	-1.95	0.73	0.73	2.68
[Pt(dba)(SbPh ₃)]	-3.28	-2.31 ^b	-1.91	0.71	0.40	2.62

^a Measured in 0.1 M *n*Bu₄NPF₆ THF solution at a scan rate of 50 mV/s. Potentials *E* (V) referenced against the FeCp₂/FeCp₂⁺ redox pair, accuracy of potentials: \pm 0.003 V. *E*_{1/2}: half-wave potential for reversible processes, *E*_p: peak potential for irreversible processes. ^b Reversible, *E*_{1/2} given.

Table S7 UV-vis absorption data of the ligand H₂dpp and the complexes [Pt(dpp)(PnPh₃)] (Pn = P, As, Sb).^a

	$\lambda_1(\varepsilon)$	$\lambda_2(\varepsilon)$	λ3(ε)	$\lambda_4(\varepsilon)$	$\lambda_5(\varepsilon)$
H2dpp	244 (27.2)	286 (11.1)	302 (10.8)	_	_
[Pt(dpp)(PPh ₃)]	252 (38.4)	267 (34.3)	278 (34.8)	336 (13.8)	349 (15.7)
[Pt(dpp)(AsPh ₃)]	252 (35.4)	265 (32.7)	281 (31.9)	339 (12.2)	352 (14.7)
[Pt(dpp)(SbPh ₃)]	253 (36.7)	267 (34.9)	282 (31.7)	340 (12.9)	354 (15.5)

^a Absorption maxima λ_n in nm in CH₂Cl₂, molar absorption coefficient in 10³ M⁻¹ cm⁻¹.

Table S8 UV-vis absorption data of the ligand H₂dba and the complexes [Pt(dba)(PnPh₃)] (Pn = P, As, Sb).^a

	$\lambda_1(\varepsilon)$	$\lambda_2(\varepsilon)$	$\lambda_{3}(\varepsilon)$	$\lambda_4(\varepsilon)$	$\lambda_5(\epsilon)$	$\lambda_6(\epsilon)$	$\lambda_7(\epsilon)$	$\lambda_8(\epsilon)$
U-dha	289	303	339	355	374	394		
n2uDa	(8.2)	(7.6)	(1.6)	(1.1)	(1.3)	(1.8)	_	_
	286	296	333	348	387	409	499	533
	(50.0)	(50.0)	(11.6)	(12.8)	(6.0)	(6.2)	(1.7)	(2.2)
[Pt(dba)(AsPh3)]	285	296	333	354	390	412	505	539
	(48.4)	(45.1)	(10.8)	(12.7)	(6.1)	(6.4)	(1.8)	(1.9)
[Pt(dba)(SbPh3)]	286	296	335	351	392	416	511	546
	(46.7)	(41.6)	(10.5)	(13.1)	(5.7)	(6.6)	(1.2)	(1.7)

^a Absorption maxima λ_n in nm in CH₂Cl₂, molar absorption coefficient in 10³ M⁻¹ cm⁻¹.

References

- 1. A. Kergreis, R. M. Lord and S. J. Pike, Influence of ligand and nuclearity on the cytotoxicity of cyclometallated C^N^C platinum(II) complexes, *Chem.–Eur. J.*, 2020, **26**, 14938–14946. DOI: 10.1002/chem.202002517
- J. N. Friedel, M. Krause, R. Jordan, I. Maisuls, D. Bruenink, D. Schwab, N. L. Doltsinis, C. A. Strassert and A. Klein, Triplet Emitting C^N^C Cyclometalated Dibenzo[c,h]Acridine Pt(II) Complexes, *Molecules*, 2022, 27, 8054. DOI: 10.3390/molecules27228054
- R. Siebert, D. Akimov, M. Schmitt, A. Winter, U.S. Schubert, B. Dietzek, J. Popp, Spectroscopic Investigation of the Ultrafast Photoinduced Dynamics in π-Conjugated Terpyridines, *ChemPhysChem.*, 2009, **10**, 910-919, DOI: 10.1002/cphc.200800847
- 4. C. Müller, T. Pascher, A. Eriksson, P. Chabera, J. Uhlig, KiMoPack: A python Package for Kinetic Modeling of the Chemical Mechanism, *J. Phys. Chem. A*, 2022, **126**, 4087–4099, DOI: 10.1021/acs.jpca.2c00907
- 5. *APEX4—Software Suite for Crystallographic Programs;* Bruker AXS, Inc.: Madison, WI, USA, 2021.
- 6. G. M. Sheldrick, A short history of SHELX, *Acta Crystallogr. A Found. Crystallograph.*, 2008, **64**, 112–122. DOI: 10.1107/S0108767307043930
- 7. G. M. Sheldrick, Crystal structure refinement with SHELXL, *Acta Crystallogr. C- Struct. Chem.*, 2015, **71**, 3–8. DOI: 10.1107/S2053229614024218
- 8. C. B. Hübschle, G. M. Sheldrick, B. Dittrich, ShelXle: a Qt graphical user interface for SHELXL, *J. Appl. Crystallogr.*, 2011, **44**, 1281–1284. DOI: 10.1107/S0021889811043202
- 9. F. Neese, F. Wennmohs, U. Becker und C. Riplinger, J. Chem. Phys., 2020, 152, 224108. DOI: 10.1063/5.0004608.
- 10. F. Neese, The ORCA quantum chemistry program package, *WIREs Comput Mol Sci.*, 2022, **12**, e1606. DOI: 10.1002/wcms.1606
- F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297. DOI: 10.1039/b508541a
- 12. A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, *Phys. Rev. A*, 1988, **38**, 3098–3100. DOI: 10.1103/PhysRevA.38.3098
- 13. J. P. Perdew and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, *Phys. Rev. B*, 1986, **33**, 8800–8802. DOI: 10.1103/PhysRevB.33.8800
- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *J. Chem. Phys.* 2010, 132, 154104. DOI: 10.1063/1.3382344
- 15. S. Grimme, S. Ehrlich and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, *J. Comput. Chem.*, 2011, **2011**, 1456–1465. DOI: 10.1002/jcc.21759
- 16. V. Barone and M. Cossi, Effect of the damping function in dispersion corrected density functional theory, *J. Phys. Chem. A*, 1998, **102**, 1995–2001. DOI: 10.1021/jp9716997
- M. Cossi, N. Rega, G. Scalmani and V. Barone, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, *J. Comput. Chem.*, 2003, 24, 669–681. DOI: 10.1002/jcc.10189
- J. Tao, J. P. Perdew, V. N. Stavoverov and G. E. Scuseria, Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids, *Phys. Rev. Lett.*, 2003, **91**, 146401. DOI: 10.1103/PhysRevLett.91.146401
- 19. Chemcraft graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com.
- 20. F. Plasser, TheoDORE: A toolbox for a detailed and automated analysis of electronic excited state computations, *J. Chem. Phys.*, 2020, **152**, 084108. DOI: 10.1063/1.5143076
- E. van Lenthe, J. G. Snijders and E. J. Baerends, The zero-order regular approximation for relativistic effects: The effect of spin–orbit coupling in closed shell molecules, *J. Chem. Phys.*, 1996, **105**, 6505–6516. DOI: 10.1063/1.472460

- 22. D. A. Pantazis, X.-Y. Chen, C. R. Landis and F. Neese, All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms, *J. Chem. Theory Comput.*, 2008, **4**, 908–919. DOI: 10.1021/ct800047t
- 23. J. D. Rolfes, F. Neese and D. A. Pantazis, All-electron scalar relativistic basis sets for the elements Rb–Xe, *J. Comput. Chem.*, 2020, **41**, 1842–1849. DOI: 10.1002/jcc.26355