Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

to

Novel Stable Ytterbium Acetylacetonate-Quinaldinate Complexes as Single-Molecule Magnets and Surprisingly Efficient Luminophores

by

Andrey V. Gavrikov^a, Andrey B. Ilyukhin^a, Ilya V. Taydakov^b, Mikhail T. Metlin^{b,c}, Nikolay P.Datskevich^b, Mikhail E. Buzoverov^a, Konstantin A. Babeshkin^a, Nikolay N. Efimov^a

Table S1. Crystal data and structure refinement for 1, 2, 2_1.

Identification code	1	2	2_1
Empirical formula	C ₂₀ H ₂₀ NO ₆ Yb	$C_{32}H_{28}N_3O_6Yb$	C ₃₅ H ₃₇ N ₃ O _{7.50} Yb
Formula weight	543.41	723.61	792.71
Temperature, K	100(2)	150(2)	100(2)
Wavelength, Å	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	P2 ₁ /n	P-1	P-1
a, Å	9.3312(2)	10.1267(4)	11.9925(4)
b <i>,</i> Å	11.6285(3)	12.5770(5)	12.1587(4)
c, Å	18.2162(5)	12.5907(5)	26.1155(8)
α, °	90	83.2460(10)	101.6180(10)
β <i>,</i> °	96.5070(10)	71.9510(10)	92.0670(10)
γ, °	90	67.4820(10)	118.4930(10)
Volume, ų	1963.87(9)	1408.44(10)	3239.33(18)
Z	4	2	4
D (calc), Mg/m ³	1.838	1.706	1.625
μ, mm ⁻¹	4.798	3.371	2.942
F(000)	1060	718	1592
Crystal size, mm	0.28 x 0.20 x 0.18	0.28 x 0.22 x 0.20	0.20 x 0.12 x 0.04
θ range, °	2.082, 36.130	2.274, 30.138	2.057, 33.159
Index ranges	-14<=h<=14	-13<=h<=14	-18<=h<=18
	-17<=k<=18	-16<=k<=17	-18<=k<=18
	-28<= <=28	-17<= <=17	-37<= <=40
Reflections collected	43043	30295	97701
Independent reflections, Rint	8524, 0.0364	7753, 0.0561	23599, 0.0284
Completeness to θ = 25.242°	99.9 %	99.9 %	99.8 %
Absorption correction	Semi-empirical	Semi-empirical	Semi-empirical
	from equivalents	from equivalents	from equivalents
Max,. min. transmission	0.5675 <i>,</i> 0.4024	0.746, 0.6579	0.7465, 0.6129
Refinement method	Full-matrix	Full-matrix	Full-matrix
	least-squares on F ²	least-squares on F ²	least-squares on F ²
Data / restraints / parameters	8524 / 0 / 253	7753 / 0 / 383	23599 / 0 / 849
Goodness-of-fit	1.037	1.077	1.013
R1, wR2 [I>2sigma(I)]	0.0269, 0.0455	0.0348, 0.0533	0.0226, 0.0478

R1, wR2 (all data)	0.0354, 0.0474	0.0478, 0.0582	0.0297, 0.0498
Largest diff. peak and hole, e.Å-3	0.959, -2.147	1.442, -1.378	0.850, -0.954
CCDC	2292786	2292787	2292788

 TableS2.
 Fragmentof .prp file for the single crystal of 2_1.

Lattice exceptions:	Р	A	В	С	I	F	Obv	Rev	All
N (total) =	0	48804	49064	48886	48872	73377	65126	65148	97728
N (int>3sigma) =	0	38960	34978	39280	39183	56609	52235	52138	78149
Mean intensity =	0.0	32.5	11.4	32.4	32.7	25.4	32.8	32.6	32.6
Mean int/sigma =	0.0	15.0	10.2	15.0	15.0	13.4	15.0	15.0	15.0

SPACE GROUP DETERMINATION

Fig. S1. Powder XRD patterns of products of syntheses of **1** in various alcohols compared to the calculated pattern of **1** structure.

Fig. S2. IR spectra of complexes **1** and **2** compared with those of HQ and Phen \cdot H₂O.

Fig. S3. Powder XRD pattern of the product of the synthesis of **1_Lu** compared to calculated pattern of **1** structure.

Fig. S4. Powder XRD pattern of the product of the synthesis of 2 compared to calculated pattern of 2 structure.

Fig. S5. Powder XRD pattern of the product of the synthesis of **2_Y** compared to calculated pattern of **2** structure.

structure.

Fig. S7. Powder XRD pattern of the product of the synthesis of **2_1** from EtOH compared to calculated pattern of **2_1** structure.

Fig. S8. IR spectrum of the intermediate product precipitated during the alternative synthesis of **2** (blue line, see *p. 3.1.* of the main text) compared with the spectra of Yb(acac)₃·3H₂O (red line) and Phen·H₂O (green line).

Fig. S9. Powder XRD pattern of the product isolated from the alternative synthesis of **2**(see *p. 3.1.* of the main text) compared to calculated pattern of **2**structure.

compared to calculated pattern of **2** structure.

Fig. S12. TG (red) and DSC (green) curves of complex 1 on heating under Ar flow.

Fig. S13. TG (red) and DSC (green) curves of complex 1 on heating under artificial air flow.

Fig. S14. TG (red) and DSC (green) curves of complex 2 on heating under Ar flow.

Fig. S15. TG (red) and DSC (green) curves of complex 2 on heating under artificial air flow.

1	
C(2)C(6) (-x, -y+1, -z)	3.346
C(4)C(4) (-x, -y+1, -z)	3.359
2	
C(1)C(5) (-x, -y, -z+1)	3.331
C(2)C(6) (-x, -y, -z+1)	3.492
C(3)C(9) (-x, -y, -z+1)	3.407
C(4)C(4) (-x, -y, -z+1)	3.496
C(22)C(26) (-x+1, -y+1, -z)	3.311
C(24)C(24) (-x+1, -y+1, -z)	3.395
2_1	
C(1)C(35)	3.438
C(3)C(33)	3.514
C(5)C(42)	3.484
C(10)C(37)	3.487
C(22)C(28) (-x, -y, -z+1)	3.421
C(23)C(27) (-x, -y, -z+1)	3.385
C(23)C(28) (-x, -y, -z+1)	3.410
C(25)C(32) (-x, -y, -z+1)	3.478
C(55)C(59) (-x+3, -y+2, -z+2)	3.479
C(55)C(60) (-x+3, -y+2, -z+2)	3.341
C(56)C(59) (-x+3, -y+2, -z+2)	3.475
C(58)C(64) (-x+3, -y+2, -z+2)	3.500

Fig.S16. Stacking interactions in the structure 1.

Fig.S17. Stacking interactions in the structure 2.

Fig.S18. Stacking interactions in the structure 2_1.

Fig. S19. Low-temperature magnetization *vs.* H (left) and *vs.* HT^{-1} (right) for complex **1** (per one Yb³⁺ ion, empty simbols) and **2** (filled simbols).

Fig. S20. Frequency dependencies of the in-phase (χ ') and out-of-phase (χ '') components of the dynamic magnetic susceptibility of **1** at varied strength of the external static magnetic field and T=2K. Solid lines are visual guides.

Fig. S21. Frequency dependencies of the in-phase (χ ') and out-of-phase (χ ") components of the dynamic magnetic susceptibility of **2** at varied strength of the external static magnetic field andT=4K. Solid lines are visual guides.

Table S4. Fitting of the τ vs. T dependences for **1** (H_{DC} = 1.5 kOe, T = 2-7 K).

Table S5. Fitting of the τ vs. T dependences for **2** (H = 1.5 kOe, T = 2.5-8.5 K).

Fig. S22. Frequency dependencies of the in-phase (χ ') and out-of phase (χ ") components of the dynamic magnetic susceptibility of **1_Lu** at varied strength of the external static magnetic field and T = 2 K. Solid lines are visual guides.

Fig. S23. Frequency dependencies of the in-phase (χ' , a) and out-of-phase (χ'' , b) components of the dynamic magnetic susceptibility of **1_Lu** under optimal magnetic field 2500 Oe at various temperatures. Solid lines are visual guides (a), approximations by the generalized Debye model (b).

Fig. S24.τ*vs.* T⁻¹ plots for **1_Lu** in 2500 Oe DC field. Solid line represents best fit by the sum of Orbach, Raman and QTM relaxation mechanisms.

Fig. S25. Frequency dependencies of the in-phase (χ ') and out-of-phase (χ ") components of the dynamic magnetic susceptibility of **2_Y** at varied strength of the external static magnetic field and T=2K. Solid lines are visual guides.

Fig. S26. Frequency dependencies of the in-phase (χ' , a) and out-of phase (χ'' , b) components of the dynamic magnetic susceptibility of **2_Y** under optimal magnetic field 1500 Oe at various temperatures. Solid lines are visual guides (a), approximations obtained by the use of generalized Debye model (b).

Fig. S27. $\tau vs.$ T⁻¹ plots for **2_Y** in 1500 Oe DC field. Solid line represents best fit by the sum of Orbach, Raman and QTM relaxation mechanisms.

Table S6.Fitting parameters of magnetization relaxation for **3** and **4**.

Complex	Orbach+Raman+QTM				
(<i>dc</i> -field, Oe)	$\Delta_{\rm eff}/k_{\rm B}$, K	τ ₀ ,s	C _{Raman} ,s ⁻¹ K ^{-n_Raman}	n_ _{Raman}	B, s ^{−1}
1_Lu	27 ± 3	4.4·10 ⁻⁷ ± 4·10 ⁻⁷	0.1±0.1	7 (fixed)	860± 28
(2500)					
2_Y	35 ± 3	1·10 ⁻⁶ ± 5·10 ⁻⁷	0.040± 0.008	6.5	18± 5
(1500)				(fixed)	

Complex / Nuclearity	Polyhedron	Δ _{eff} /k _B , K / (H _{dc})	[Ref.]	
[Yb(acac ^[2]) ₂ (Q ^[3])] _n (1)		40 / (1.5 kOe)	This work	
YbL ^[1] ·4H ₂ O / Mononuclear		16	2	
Yb(trensal ^[11]) [‡] / <i>Mononuclear</i>	Cannod astabadran	54.7 [†]	5	
[Yb ₂ (H ₂ cht ^[III]) ₂ Cl ₄ (H ₂ O)(MeCN)]·MeCN / Dinuclear	Capped Octaneuron	19.5(2)	8	
YbL ^[IV] / <i>Mononuclear</i> YbL* ^[V] ·3MeOH / <i>Mononuclear</i>	-	_§	9	
{[Yb ₂ (DTE ^[VI])(H-DTE)(MeOH) ₂]·2H ₂ O} _n [‡] / 1D-polynuclear	Capped trigonal	38.9*	1	
[Yb(H ₃ L ^{1,1,4} [VII])]·2MeOH / <i>Mononuclear</i>	prism	20.9 [†]	6	
$[Yb{Ir(ppy^{[VIII]})_2(dcbpy^{[IX]})}_2(NO_3) (H_2O)_4] \cdot Solv# / 1D-polynuclear$	Cappedtrigonalpris m↔Pentagonalbip yramide	24.4	4	
[Yb ₂ (OH){Ir(ppy) ₂ (dcbpy)} ₄ (NO ₃)(H ₂ O) ₄]·Solv [#] / 2D-polynuclear		22.2		
Yb ₂ L ^[X] ₂ (depma ^[XI] ₂)Cl ₂ / Dinuclear		23.5	3	
[Yb ₂ (NMP ^[XII]) ₁₂ (PW ₁₂ O ₄₀)][PW ₁₂ O ₄₀] ^{#‡} / Dinuclear	Pentagonal	11.84 ^Δ	7	
[Yb(BcrCOO ^[XIII])(acac ^[XIV]) ₂ (H ₂ O)] _n # / 1D-polynuclear	bipyramide	36	10	
[Yb(H ₃ Bmshp ^[XV])(DMF) ₂ Cl ₂]·DMF·1.5H ₂ O / Mononuclear		14.5*	11	
[Yb(H ₃ Bmshp)(DMF) ₂ Cl ₂]·H ₄ Bmshp / Mononuclear		38.3 ⁺	11	

Table S7. Known 7-coordinated Yb SMMs.

 $^{[1]}L$ = fully (triply) deprotonated N[(CH₂)₂N=CH–R–CH=N–(CH₂)₂]₃N cryptand (R = m-C₆H₂OH-2-Me-5); $^{[1]}$ trensal = fully (triply) deprotonated 2,2',2"-tris(salicylideneimino)triethylamine); *No powder XRD data were provided for the studied samples; [†]Recalculated from cm⁻¹;^[III] H_3 cht = mono deprotonated 1,3,5-cyclohexanetriol; ^[IV]L = tris(((3formyl-5-methylsalicylidene)amino)ethyl)amine; Δ_{eff}/k_{B} values were not determined since Orbach mechanism was not applied to fit relaxation times; $I^{(V)}L^*$ = triply deprotonated product of condensation of tris(((3-formyl-5methylsalicylidene)amino)ethyl)amine with benzylamine; ^[VI]DTE = 1,2-bis(5-carboxyl-2-methyl-3-thienyl) 2-[({2-[(2-hydroxybenzyl)amino]ethyl}{2-[3-(2-^[VII]H₃L^{1,1,4}= perfluorocyclopentene); triply deprotonated hydroxybenzyl)-2,2-dimethylimidazolidin-1-yl]ethyl}amino)methyl]phenol; [VIII]ppy = 2-phenylpyridine; [IX]dcbpy = 2.2'-bipvridine-4-carboxyl-4'-carboxylate; #Magnetic behavior of these complexes is governed by Yb³⁺ due to diamagnetism of the involved cations of heterometalls;^[X]L = doubly deprotonated N¹,N³bis(salicylideneimino)diethylenetriamine; [XII]depma₂ = dimerized 9-diethyl-phosphonomethylanthracene; [XIII]NMP = N-methyl pyrrolidone; $^{\Delta}$ This value was obtained for the Lu-diluted sample;^[XIII]BrcCOO = (η_{6} benzoate)tricarbonylchromium; $[x_{IV}]acac = acethylacetonate (pentane-2,4-dionate) anion; <math>[x_{VI}]H_3Bmshp = mono$ deprotonated (2,6-bis[(3-methoxysalicylidene)hydrazinecarbonyl]-pyridine).

References

1 M.A. Yatoo, G. Cosquer, M. Morimoto, M. Irie, B.K. Breedlove and M. Yamashita, *Magnetochemistry*, 2016, **2**, 21;

2 C.D. Buch, D. Mitcov and S. Piligkos, *Dalton Trans.*, 2020, 49, 13557;

3 Q. Zou, J.-C. Liu, X.-D. Huang, S.-S. Bao and L.-M. Zheng, *Chin. Chem. Lett.*, 2021, **32**, 1519;

4 K. Fan, S.-S. Bao, R. Huo, X.-D. Huang, Y.-J. Liu, Z.-W. Yu, M. Kurmoo and L.-M. Zheng, *Inorg. Chem. Front.*, 2020, **7**, 4580;

5 K.S. Pedersen, J. Dreiser, H. Weihe, R. Sibille, H.V. Johannesen, M.A. Sørensen, B.E. Nielsen, M. Sigrist, H. Mutka, S. Rols, J. Bendix and S. Piligkos,*Inorg. Chem.*, 2015, **54**, 7600;

6 M. Fondo, J. Corredoira-Vázquez, A.M. García-Deibe, J. Sanmartín-Matalobos, M. Amoza, A.M.P. Botas, R.A.S. Ferreira, L.D. Carlos and E. Colacio,*Inorg. Chem. Front.*, 2020, **7**, 3019;

7 J. Li, C. Yuan, L. Yang, M. Kong, J. Zhang, J.-Y. Ge, Y.-Q. Zhang and Y. Song, *Inorg. Chem.*, 2017, **56**, 7835;

J.-D. Leng, J.-L. Liu, Y.-Z. Zheng, L. Ungur, L.F. Chibotaru, F.-S. Guo and M.-L. Tong,*Chem. Commun.*, 2013, **49**, 158;

9 C.D. Buch, S.H. Hansen, C.M. Tram, D. Mitcov and S. Piligkos, *Inorg. Chem.*, 2020, **59**, 16328;

10 A.V. Gavrikov, P.S. Koroteev, N.N. Efimov, Z.V. Dobrokhotova, A.B. Ilyukhin, A.K. Kostopoulos, A.-M. Ariciu and V.N. Novotortsev, *Dalton Trans.*, 2017, **46**, 3369;

11 D.-Q. Wu, D. Shao, X.-Q. Wei, F.-X. Shen, L. Shi, Y.-Q. Zhang and X.-Y. Wang, *Dalton Trans.*, 2017, **46**, 12884.

ofCOO(Q⁻) groups.

Fig. S30. Luminescence spectra in the energy representation for the **2_Gd** at temperatures of 77K and 300K.

Fig. S31. Optical absorption spectra of solutions of 1 and 2 in DMSO.