Electronic Supporting Information (ESI)

[Ag₄Br₆] cluster-based 3D bromoargentate hybrid: Crystal structure, optical/photoelectric performance and theoretical study

Ming-Hui Liu,^a Wei-Yang Wen,^b Hong-Yao Shen,^a Yan Yang,^{a,b} Jun Li,^{*,a,b} and Bo Zhang^{*,a,b}

^aCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China ^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure

of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

*E-mail: junli@lcu.edu.cn; bzhang@lcu.edu.cn

1. More structural details of compound 1

Table SI Selected b	Table S1 Selected bond lengths (A) and bond angles (°) for compound 1.					
Ag(1)-N(1)	2.442(12)	Ag(1)-Ag(1)#1	3.149(2)			
Ag(1)-Br(1)#1	2.7002(14)	Ag(1)-Ag(1)#3	3.149(2)			
Ag(1)-Br(1)	2.7002(15)	Ag(1)-Ag(1)#4	3.149(2)			
Ag(1)-Br(1)#2	2.7002(15)	Br(1)-K(1)	3.4639(18)			
N(1)-Ag(1)-Br(1)#1	90.40(3)	N(1)-Ag(1)-Br(1)#2	90.40(3)			
N(1)-Ag(1)-Br(1)	90.40(3)	Br(1)#1-Ag(1)-Br(1)#2	119.995(1)			
Br(1)#1-Ag(1)-Br(1)	119.995(1)	Br(1)-Ag(1)-Br(1)#2	119.995(1)			

 Table S1 Selected bond lengths (Å) and bond angles (°) for compound 1.

Symmetry transformations used to generate equivalent atoms: #1 - y + 1, x - 1, -z; #2 - x + 2, -z, y; #3 y + 1,

```
-x+1, -z; #4 -x+2, -y, z.
```

Table S2 Hydrogen bonds (Å) and angles (°) for compound 1.					
D–H···A	d(D–H)	$d(H^{\dots}A)$	$d(D \cdots A)$	<(DHA)	
C(1)-H(1B)Br(1)#5	0.97	3.10	3.778(6)	127.9	
C(1)-H(1B)Br(1)#1	0.97	3.10	3.778(6)	127.9	
$C(1)-H(1A)\cdots Br(1)$	0.97	3.10	3.778(6)	127.9	
C(1)-H(1A)Br(1)#6	0.97	3.10	3.778(6)	127.9	

Symmetry transformations used to ge	enerate equivalent atoms: #1	-y+1, x-1, -z; #6 y+1/2,	, -x+3/2, -z;
	#5 - x + 3/2, -y + 1/2, z.		

Table S3 Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (A² × 10³) for compound **1**.

To) for compound 1.					
	x	У	Z	$U_{(eq)}$	
Ag(1)	9178(1)	822(1)	822(1)	31(1)	
Br(1)	10000	2442(1)	0	48(1)	
K(1)	10000	5000	0	50(2)	
N(1)	8137(5)	1863(5)	1863(5)	14(2)	
C(1)	7500	2500	1237(9)	20(2)	
N(2)	2500	2500	2500	23(6)	

Table S4 Anisotropic displacement parameters $(A^2 \times 10^3)$ for compound **1**.

		<u> </u>	-		,	-
	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Ag(1)	31(1)	31(1)	31(1)	-5(1)	5(1)	5(1)
Br(1)	57(1)	30(1)	57(1)	0	34(1)	0
K(1)	50(2)	50(2)	50(2)	0	0	0
N(1)	14(2)	14(2)	14(2)	-2(3)	2(3)	2(3)
C(1)	19(3)	19(3)	21(6)	0	0	2(5)
N(1)	23(6)	23(6)	23(6)	0	0	0

		compound I	•	
	x	У	Ζ	$U_{(eq)}$
H(1A)	7910	2910	817	23
H(1B)	7090	2090	817	23
H(1)	2330(100)	2051(19)	2051(19)	34

Table S5 Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($A^2 \times 10^3$) for
compound 1.

2. Crystal structure

Fig. S1 The asymmetric unit of compound 1.

Fig. S2 A comprehensive view of the coordination environment among the $[Ag_4Br_6]$ cluster, Hmta ligands and the K^+ ions.

Fig. S3 The simplified topology for showing the 1D channel.

Fig. S4 Stacking diagram of compound 1 viewed along the [1 1 0] direction; dashed lines show the interactions of $C-H\cdots Br$.

3. EDX

Fig. S5 The SEM and element mapping of Ag, Br and K for compound 1.

4. DSC

Fig. S6 The DSC curves of compound 1.

5. Tauc plot

Fig. S7 Tauc plots of compound 1 corresponding to an indirect (a) and a direct (b) optical bandgap.

6. XPS

Fig. S8 The XPS survey spectrum of compound 1.

Fig. S9 The high-resolution K-2p peaks in compound 1.

7. DFT calculations

Fig. S10 The total density of states and partial density of states of compound 1. Fermi level is set at 0 eV (dashed line).

Compound	Dimension	Cluster unit	Ligand	Ref.
K[NH ₄][Ag ₄ Br ₆ (Hmta)]	3D	[Ag ₄ Br ₆]	Hmta	This
				work
[NH ₄][Me-Hmta][Ag ₄ Br ₆ (Hmta)]	3D	$[Ag_4Br_6]$	Hmta	[1]
[Hmta][Ag ₄ I ₄ (Hmta)]	3D	$[Ag_4I_4]$	Hmta	[2]
$[NH_4][Ag_5I_6(Hmta)]$	2D	$[Ag_5I_6]$	Hmta	[3]
$[Ag_8I_6(Hmta)_2]I_2$	3D	$[Ag_8I_6]$	Hmta	[2]
[Cu ₄ Cl ₆ (Hmta)][Cu ₃ (OH)(Hmta)]·3H	3D	[Cu ₅ Cl ₆]; [Cu ₆ Cl ₆]	Hmta	[4]
₂ O				
[Cu ₄ (µ-Cl) ₆ (µ ₄ -O)Cu(OH) ₂ (µ-	3D	[Cu ₄ Cl ₆ O]	PTA=O	[5]
$PTA=O_{4}]$ ·2Cl·EtOH·2.5H ₂ O				
[Et-Hmta][Cu ₄ I ₆ (Et-hmta)]·CH ₃ CN	2D	[Cu ₄ I ₆]	Et-Hmta	[6]

Table S6 Summary of some representative haloargentate and halocuprate clusters

 coordinated by Hmta ligand and the derivative.

 Table S7 Summary of the band gaps of representative organic-inorganic hybrid

 haloargentates in the literature.

Compound	Space	Band gap (eV)	Ref.
	group		
K[NH ₄][Ag ₄ Br ₆ (Hmta)]	$F\overline{4}3m$	2.68	This work
$[Co(phen)_3]_2Ag_{11}I_{15} \cdot H_2O$	P63/m	2.84	[7]
[(Ni(bipy) ₃][H-2,2-bipy]Ag ₃ I ₆	<i>C</i> 2	2.75	[8]
[Zn(bipy) ₃]Ag ₃ I ₅	$P2_{1}2_{1}2_{1}$	2.61	[9]
K[Zn(bipy) ₃] ₂ Ag ₆ Br ₁₁	$R^{\overline{3}}$	2.61	[10]
$[Zn(bipy)_3]_2Ag_{13}Br_{17}$	Pcca	2.71	[10]
$[MV(Ag_2Br_4)]_n$	$P2_{1}/n$	2.79	[11]
[NH ₄] ₂ AgBr ₃	Pnma	2.50	[12]
$[(EC)(Ag_2I_3)]_n$	$P2_1/m$	2.80	[13]
$[(\mathbf{PC})(\mathbf{Ag}_5\mathbf{I}_6)]_n$	Pbca	2.72	[13]
[Ni(DMSO) ₆][Ag ₅ I ₇]	Pbcm	2.73	[14]
$[V(DMSO)_5(H_2O)][Ag_6I_8]$	$P2_{1}/c$	2.61	[14]
$[Ni(phen)_3]_2Ag_{13}Br_{17} \cdot 2DMSO \cdot 3H_2O$	<i>I</i> 2 ₁ 3	2.24	[15]
$[C_4H_{10}N]_4AgBiBr_8$	C2/m	2.85	[16]
[Co(bipy) ₃]Ag ₃ I ₆	$R\bar{3}$	2.03	[17]
$[Co(phen)_3]Ag_2I_4 \cdot 3DMF$	$P^{\overline{1}}$	2.59	[18]

Terefences.					
Compound	Light	Photocurrent density (µA	Ref.		
	source	cm ⁻²)			
K[NH ₄][Ag ₄ Br ₆ (Hmta)]	$\lambda > 420 \text{ nm}$	0.38	This work		
$[Co(bipy)_3]_2Ag_4Bi_2Br_{16}$	$\lambda > 420 \text{ nm}$	1.10	[19]		
[Ni(bipy)3]AgBiBr6	$\lambda > 420 \text{ nm}$	0.28	[20]		
[Fe(bipy) ₃]AgBiBr ₆	$\lambda > 420 \text{ nm}$	2.2	[20]		
[Fe(phen) ₃]Ag ₂ PbBr ₆	$\lambda > 420 \text{ nm}$	0.4	[21]		
[Ni(phen) ₃]Ag ₂ PbBr ₆	$\lambda > 420 \text{ nm}$	0.07	[21]		
$[\mathrm{NH}_4][\mathrm{Fe}(\mathrm{bipy})_3]_2[\mathrm{Ag}_6\mathrm{Br}_{11}]$	$\lambda > 420 \text{ nm}$	3.0	[22]		
[Co(phen) ₃]Ag ₂ PbI ₆	$\lambda > 420 \text{ nm}$	0.16	[23]		
[Ni(5,5-dmpy) ₃]Ag ₇ I ₉ ·CH ₃ CN	$\lambda > 420 \text{ nm}$	0.14	[23]		
$[Co(5,5-dmpy)_3]Ag_5I_8$	$\lambda > 420 \text{ nm}$	0.14	[23]		
$[Ni(5,5\text{-}dmbpy)_3]_2Ag_{4.9}I_{8.9}\text{-}4H_2O$	$\lambda > 420 \text{ nm}$	0.5	[24]		
$[Ag_2I_2(phen)]_n$	$\lambda > 420 \text{ nm}$	0.32	[25]		
$[AgI(bpt)]_n$	$\lambda > 420 \text{ nm}$	0.66	[25]		

Table S8 Summary of the photocurrent densities of similar haloargentates in this work and

8. Reference

- 1. Z. Z. Xue, X. D. Meng, X. Y. Li, S. D. Han, J. Pan and G. M. Wang, Luminescent thermochromism and white-light emission of a 3D [Ag₄Br₆] cluster-based coordination framework with both adamantane-like node and linker. *Inorg. Chem.* 2021, **60**, 4375–4379.
- R. C. Zhang, J. J. Wang, J. C. Zhang, M. Q. Wang, M. Sun, F. Ding, D. J. Zhang and Y. L. An, Coordination-induced syntheses of two hybrid framework iodides: A thermochromic luminescent thermometer. *Inorg. Chem.* 2016, 55, 7556–7563.
- Z. Z. Xue, X. D. Meng, X. Y. Li, J. Pan and G. M. Wang, Penta-nuclear [Ag₅I₆] cluster-based photochromic hybrid: Synthesis, structure, dye sorption, and separation. *Cryst. Growth & Des.* 2021, 21, 1055–1061.
- 4. L. X. Hu, F. Wang, Y. Kang and J. Zhang, Structural design of zeolitic cluster organic frameworks from hexamethylentetramine and copper-halide clusters. *Cryst. Growth Des.* 2016, **16**, 7139–7144.
- E. I. Sliwa, D. S. Nesterov, M. V. Kirillova, J. Klak, A. M. Kirillov and P. Smolenski, A 3D MOF based on adamantoid tetracopper(II) and aminophosphine oxide cages: Structural features and magnetic and catalytic properties. *Inorg. Chem.* 2021, 60, 9631–9644.
- A. V. Artem'ev, M. P. Davydova, X. Hei, M. I. Rakhmanova, D. G. Samsonenko, I. Y. Bagryanskaya, K. A. Brylev, V. P. Fedin, J. S. Chen, M. Cotlet and J. Li, Family of robust and strongly luminescent CuI-based hybrid networks made of ionic and dative bonds. *Chem. Mater.* 2020, 32, 10708–10718.
- T. L. Yu, Y. B. Fu, Y. L. Wang, P. F. Hao, J. J. Shen and Y. L. Fu, Hierarchical symmetry transfer and flexible charge matching in five [M(phen)₃]²⁺ directed iodoargentates with 1 to 3D frameworks. *CrystEngComm* 2015, **17**, 8752–8761.
- X. W. Lei, C. Y. Yue, J. Q. Zhao, Y. F. Han, J. T. Yang, R. R. Meng, C. S. Gao, H. Ding, C. Y. Wang, W. D. Chen and M. C Hong, Two types of 2D layered iodoargentates based on trimeric [Ag₃I₇] secondary building units and hexameric [Ag₆I₁₂] ternary building units: Syntheses, crystal structures, and efficient visible light responding photocatalytic properties. *Inorg. Chem.* 2015, 54, 10593–10603.

- X. W. Lei, C. Y. Yue, J. Q. Zhao, Y. F. Han, Z. R. Ba, C. Wang, X. Y. Liu, Y. P. Gong and X. Y. Liu, Syntheses, crystal structures, and photocatalytic properties of polymeric iodoargentates [TM(2,2-bipy)₃]Ag₃I₅ (TM = Mn, Fe, Co, Ni, Zn). *Eur. J. Inorg. Chem.* 2015, 4412–4419.
- C. Y. Yue, X. W. Lei, Y. F. Han, X. X. Lu, Y. W. Tian, J. Xu, X. F. Liu and X. Xu, Transitionmetal-complex cationic dyes photosensitive to two types of 2D layered silver bromides with visible-light-driven photocatalytic properties. *Inorg. Chem.* 2016, 55, 12193–12203.
- Y. C. Zhu, J. J. Shen, T. L. Yu, Y. L. Fu and P. F Hao, Halogen-dependent thermochromic properties in three methyl-viologen/haloargentate charge transfer (CT) salts. *J. Clust. Sci.* 2016, 27, 1283–1291.
- 12. T. D. Creason, H. Fattal, I. W. Gilley, T. M. McWhorter, M. H. Du and B. Saparov, $(NH_4)_2AgX_3$ (X = Br, I): 1D silver halides with broadband white light emission and improved stability. *ACS Mater. Au* 2021, **1**, 62–68.
- J. J. Shen, C. F. Zhang, T. L. Yu, L. An and Y. L. Fu, Structural and functional modulation of five 4-cyanopyridinium iodoargentates built up from cubane-like Ag₄I₄ nodes. *Cryst. Growth & Des.* 2014, 14, 6337–6342.
- Y. Mu, D. Wang, X. D. Meng, J. Pan, S. D. Han and Z. Z. Xue, Construction of iodoargentates with diverse architectures: Template syntheses, structures, and photocatalytic properties. *Cryst. Growth & Des.* 2020, 20, 1130–1138.
- Y. L. Shen, L. M. Zhang, S. F. Li, P. P. Sun, W. Q. Jiang and D. X. Jia, Syntheses, crystal structures, and photocatalytic properties of bromoargentates induced by transition-metal-phen complex cations. *Eur. J. Inorg. Chem.* 2018, 826–834.
- B. A. Connor, L. Leppert, M. D. Smith, J. B. Neaton and H. I. Karunadasa, Layered halide double perovskites: Dimensional reduction of Cs₂AgBiBr₆. J. Am. Chem. Soc. 2018, 140, 5235–5240.
- C. Y. Tang, Y. W. Sun, J. B. Liu, Q. F. Xu and C. Y. Zhang, [Co(2,2'-bipy)₃]Ag₃I₆ with a hole structure facilitates dye adsorption and photocatalytic reduction. *Dalton Trans.* 2022, 51, 16784–16789.
- C. Y. Tang, J. Yao, Y. Y. Li, Z. R. Xia, J. B. Liu and C. Y. Zhang, Transition-metal-complexdirected synthesis of hybrid iodoargentates with single-crystal to single-crystal structural transformation and photocatalytic properties. *Inorg. Chem.* 2020, 59, 13962–13971.
- B. Zhang, J. Li, M. Pang, X. Chen and M. Z. Liu, Two [Co(bipy)₃]³⁺-templated silver halobismuthate hybrids: Syntheses, structures, photocurrent responses, and theoretical studies. *Inorg. Chem.* 2022, **61**, 9808–9815.
- B. Zhang, J. Li, M. Pang, Y. S. Wang, M. Z. Liu and H. M. Zhao, Four discrete silver iodobismuthates/bromobismuthates with metal complexes: Syntheses, structures, photocurrent responses, and theoretical studies. *Inorg. Chem.* 2022, 61, 406–413.
- X. C. Ren, J. Li, W. H. Wang, Y. N. Shao, B. Zhang and L. Z. Li, Hybrid silver haloplumbates containing metal complexes: Syntheses, structures and photoelectric properties. *J. Solid State Chem.* 2022, **308**, 122912.
- B. Zhang, J. Li, X. Chen, M. F. Yang, H. Y. Shen and J. C. Zhu, [NH₄][Fe(bipy)₃]₂[Ag₆Br₁₁]: Synthesis, structure, characterization and photocurrent response. *Inorg. Chem. Commun.* 2022, 137, 109250.
- M. H. Liu, X. C. Ren, W. Y. Wen, B. H. Li, J. Q. Li, J. Li and B. Zhang, Three iodoargentatebased hybrids decorated by metal complexes: Structures, optical/photoelectric properties and theoretical studies *Molecules* 2023, 28, 6116.
- 24. B. Zhang, W. A. Li, J. Li, Y. P. Xu, Y. R. Xu, W. H. Wang and G. D. Zou, [Ni(5,5'-dmbpy)₃]₂Ag_{4.9}I_{8.9}·4H₂O: A discrete iodoargentate with transition metal complexes. *Inorg. Chem. Commun.* 2020, **121**, 180219–180223.
- 25. L. Huang and J. Zhou, Two hybrid polymeric iodoargentates incorporating aromatic

N-Heterocycle derivatives as electron acceptors. *Inorg. Chem.* 2020, **59**, 16814–16818.